版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
CambridgeCentreforRiskStudies
abrdn
USINGREALWORLD
SCENARIOSTOIMPROVE
THERESILIENCEOF
PRIVATEINVESTMENT
PORTFOLIOS
UsingRealWorldScenariostoImprovetheResilienceofInvestmentPortfolios
2
UsingRealWorldScenarios
toImprovetheResilienceofPrivateInvestment
Portfolios
"Historicalperformanceisnoguaranteeoffutureresults":Althoughanalysisofexperiencedatahelpsinvestmentmanagersassesshowtheirportfoliosandassetswouldhaveperformedagainstpastcrises,thenextcrisiswillbedifferent.Improvinginvestmentstrategiesagainstfuturerisksrequirestestsagainstscenariosoflikely-andunlikely-eventsacrossawiderangeofpotentialcauses.Real-worldscenariosbuildhypothesesaboutplausibleextremeeventsofthenear-termfuture,basedonscientificevidence,andusesthemtoassesshowtheycouldaffectinvestments.Usingreal-worldscenariosimprovestheresilienceofinvestmentstrategiesandprovidesbetterassessmentofriskpremiumsinassetpricing.
1ExecutiveSummary
Aftertheglobalfinancialcrisisof2008/9(GFC),privatemarketshavecontinuedtoexpandatatremendouspaceasinvestorsareincreasinglyattractedtotheprivateassetclassbyarangeofbenefitssuchasbetterreturnscomparedtotraditionalassetclasses,alowercorrelationwithotherassetsandeffectiveportfoliodiversification.Spanningprivateequity,infrastructure,naturalresourcesrealestateandprivatecredit,privatemarketshavewitnessedaperiodofphenomenalgrowth.Investorsarecommittingtoprivatemarketsintheirsearchforstableincomeand/orsuperiorreturns.
Thedynamicnatureofprivateinvestments,however,employsmultipleleverstodrivevalue,leadingtoasignificantlevelofidiosyncrasy,whichischallengingtomeasure.Lookingatthecorporatespace,thisidiosyncrasymanifestsitselfincorporatestrategy,M&Astrategy,productdevelopments,supplychain,technologyutilisationandfinancialleveragewhichareallbeingoptimisedtomaximisevalueinthemediumtolongterm.
AftertheGFCtherehasbeenareappraisalofinvestmentmodellingmethodsandanalyticalapproaches,particularlyinpublicmarkets.Thecrisisraiseddoubtthattheframeworkformeasuringriskinpublicmarketswasappropriateforportfolioscomprisingacombinationofpublicplusasignificantproportionofprivatemarketassets.Themaincriticismisthatreturnsinprivateassetsaremorevulnerabletolowprobability,highimpacttailrisksandarethereforeunlikelytobenormallydistributed.Thishasmadeitproblematictoapplytraditionalsystematicriskornon-diversifiableriskmeasurestoprivateportfoliosduetolimitedhistoricaldata.
Furthermore,itisdifficulttoformrobustconclusionsabouthowassetsperformunderdifferentmacroeconomicscenarios.
Toprovideasolution,thisprojectisanendeavourtoincorporatescenarioapproacheswiththelatestdevelopmentsinenterpriseriskmodellingtechniquesdevelopedbytheCambridgeCentreforRiskStudies(CCRS).Theyhaveresearchedmarketandmacroriskstomeasureportfolioexposurestoriskfactorsthatcanimpacttheindividualconstituentsofaninvestmentportfolio,oftendescribedasidiosyncraticrisks.
Anenterprisevaluationmodelframeworkhasbeendevelopedwhereconstituentscanbeshockedwhencalibratedtoascenariotomaketheframeworksystematicacrossmacroandmarketfactorsand,moresignificantly,theidiosyncraticcontributions.UtilisingamethodologycombiningCambridgescenariosanddigitaltwinsrepresentingportfoliocompanies,theportfolio-wideimpactofasuiteofscenarioscanbeassessedbymeasuringtheextentofpossiblelossesinfirms’discountedcashflow,wherethedeltabetweenthebaselineandmodelledcashflow,acrossallscenarios,iscalledEarningsValueatRisk.Thisenablesinvestmentmanagerstomeasureandprioritisetheriskexposureanddecidetheoptimalcourseofactionstomitigateandremediatetheriskontheirownportfolios.
Thispaperservesasanarchetypalmethodologythatprovidesabasisforfurtherresearchonintegratingamulti-dimensionalriskmanagementparadigmintotheinvestmentdecision-makingprocessforprivatemarketsassets.Ascenariostresstestingapproachcanprovideacomplementarytoolthathelpsassessingandconfrontingtheseuncertaintiesandthereforecontributingtowardstheviabilityofaportfolio.
UsingRealWorldScenariostoImprovetheResilienceofInvestmentPortfolios
3
2Introduction
TheconceptspresentedinthisreportcovertheongoingresearchjointlyconductedbytheCambridgeCentreforRiskStudies(CCRS)andabrdnonimprovingtheresilienceofprivateinvestmentportfolios.Thebodyofliteratureaddressingriskmodellingofprivatemarketassetsisrelativelyscarcecomparedtothatofpublicmarketassets.Asaresult,assetstradedinprivatemarketshavebeentreatedinterchangeablywiththoselistedinpublicmarkets.Inthisprocess,therehasbeenlittlefundamentaldifferencebetweenadjustmentsmadetoaddresstheinherentcharacteristicsofprivatemarketassetsandriskstheunderlyinginvestmentscarryandthosemadetopubliccapitalmarketassets.Thisreporthighlightsthepotentialofusingrealworldscenariosasacomplementaryapproachtoclassicalefficientmarkethypothesisanddynamicequilibriummodels.
Wedefineprivatemarketportfoliosasthoseconsistingofunlistedorprivatelyheldassetclassessuchasprivateequity,infrastructure,realestate,privatecreditandnaturalresources.Investmentsinprivatemarketshavehistoricallybeentaintedwiththeperceptionthattheseassetshavenotalwaysbeeneasilyaccessible.Asreturn-starvedinvestorsarelookingforopportunitiestoimprovetheirportfolioreturnsinthelowyieldenvironment,however,privatemarketassetsareincreasinglyviewedasanessentialandcorepartoftheirassetallocationandoverallinvestmentstrategies,addingsignificantvaluetotheirportfoliosbyofferingbetterreturnpotentialsthanconventionalinvestmentoptions,aswellasdiversificationandvolatilitymitigationbenefits.
Modellingandassessingtherisksofprivatemarketinvestmentportfoliosisachallenging,especiallyregardingeventsinthetailofdistributions.TheCambridgeTaxonomyofBusinessRisksidentifiesbroadcategoriesofcausalthreatsthatcouldpotentiallycauseasocialoreconomiccrisis.1Thiscould,inturn,havethepotentialtoimpactthereturnsofinvestmentportfoliosandindividualassets.Usingrealworldscenariostoquantifytheriskassociatedwithaninvestmentportfolioisaneconomicmethodofcapturingsomeofthetailriskthataportfolioisexposedto.Wetakedatafrom
1CCRS(2019).
2See,forexampleTheEconomist,July18,2009.
historicaleventstoparametrisethemodelallowingforarobustmethodofriskanalysis.Thismethodologycanbenefitanassetmanagerbyhighlightingtheeventsthatposeaseriousthreattotheirportfolio,aswellasoutliningthekeydriversbehindthethreat.Thistypeofmodellingisusefulforhighimpact,lowprobabilityeventsthatconstitutetailrisks,whicharenoteasytodetectormeasurewithinthetraditionalriskmodellingframeworkasthesemodelsassumenormalityasadefault.
Thisreportpresentstheunderlyingconceptsofusingrealworldscenariosasacomplementtostandardriskmanagementpracticesforstresstestingprivatemarketinvestmentportfolios.Thekeytopicsinclude:
?Reviewoftraditionalriskmodels
?Limitationsoftraditionalriskmodels
?Taxonomyofportfoliorisks
?Scenariostosupportstresstestingincludingtheirdevelopmentandapplicationmethodology
?Scenarioapplicationstoprivatemarketportfolios.
3PortfolioTheorySinceGFC
TheGFCandthefailureofmanyinvestmentportfolioriskmanagementtoolstoanticipateandmanagethemeltdownhasledtoageneralreappraisalofinvestmentmodelsandanalyticalapproaches.
Thecreditcrunchandassociatedeconomiccrisisthatfollowedgeneratedalargevolumeofcommentaryandinterpretation,andconsiderablequestioningofconventionaleconomictheory.2Macroeconomicmodelsreliedonbyseveralcentralbanks,knownas‘dynamicstochasticgeneralequilibrium’(DSGE)models,failedtoanticipatethedownturn.Amongotherinitiatives,ittriggeredamovementto‘ReinventEconomics’.
Thecritiqueofclassicaleconomictheoryquestionsthebasicassumptions,principallythe‘EfficientMarketHypothesis(EMH)’and‘dynamicequilibrium’.Suchmodelsarefelttobevaluableformanypartsofeconomicdecision-makingbutpooratunderstandingfinancialcrises.Somecommentatorshavesuggestedthattraditionaleconomics,developedduringtheearly19thCentury,isbasedonapoorparadigm,thermodynamics,inwhichsteady-statesareeventuallyachieved.3AnumberofauthorshighlightthefallacyoftheEfficientMarket
3SeeBeinhocker(2007),pp21-43‘TraditionalEconomics:AWorldinEquilibrium’.
UsingRealWorldScenariostoImprovetheResilienceofInvestmentPortfolios
4
Hypothesisinhavingnoroomforassetpricebubblesorbusts–thetheoryinsiststhatmarketsarealwayscorrectlypricedandthatbubbleshavetobenothingmorethanmarketsrespondingtochangingfundamentals.4
3.1FatCatastropheTails
Theissueforseveralanalystsisthatthetailsofthedistributionsarefatterthanmightbeexpectedfromtraditionalanalysistechniques.Asearlyasthe1960sthemathematicsofMandelbrotdemonstratedthatdistributionsofmarketpricefluctuationshavemuchfattertailsthantraditionallyexpectedbuttraditionaleconomistshavetendedtopursuemathematicalcharacterizationsbasedon‘randomwalks’(i.e.information-freerandomnesswithtrends).5Theseleadtounderestimationsofthelikelihoodofmajormarketmovements.TheeconomistGeneStanleyofBostonUniversitydemonstratedthatamarketdipoftheseverityofthe1987‘BlackMonday’hasalikelihoodof10-148intraditional‘randomwalk’mathematics.6RobertMerton,oneoftheNobel-prizewinningarchitectsoftheBlack-Scholesmodel,isquotedin1998onthedayafterLong-TermCapitalManagementlost$4.4Bnassaying“accordingtoourmodelsthisjustcouldnothappen”.7Asimilarquoteisattributedtoanunnamedchieffinancialofficerinoneoftheworld’slargesthedgefunds,afterithadsufferedhugelossesin2008assayingithadsufferedadverse“25-standarddeviationevents,severaldaysinarow”accordingtotheirmodels.8
3.2Theyweren’tdesignedasCatastropheModels
Tobefair,themodelsthatweresoheavilycriticisedwerenotdesignedtoestimatecatastropherisk.TheDSGEmodelsusedbycentralbanksweredevelopedtoinformeconomicandmonetarypolicyandhaveperformedwellduringperiodsoffinancialstability.Assetpricingmodelsingeneralhavebeengreataidstoinvestmentmanagementandhavethemselves“createdmarkets”.Economicmodelsbasedontheoreticalprincipleswereusedfromthe1970sonwardsas‘engines’todrivemarketchangeratherthanasobjective‘cameras’tosimplyreproduceempiricalfacts,9andassuchthesemodelsalteredthe
4Cooper(2008)isonekeycriticoftheefficientmarkethypothesis,inhisbookTheOriginofFinancialCrises:CentralBanks,CreditBubblesandEfficientMarket
Fallacy.
5SeeMandelbrot(2008)andBeinhocker(2007)p179-181.
6PresentationbyH.EugeneStanleyataconferenceonTheEconomyasanEvolvingComplexSystem,SantaFe
Institute,Nov16,2001inBeinhocker(2007)p180.
7‘HowtheEggheadsCracked’byM.Lewis,NewYorkTimesMagazine,Jan24,1999pp24-77.
8Cooper(2008)p10.
9MacKenzie(2006):AnEngine,NotaCamera:HowFinancialModelsShapeMarkets.
marketstheyrepresentedthrough,forexample,enablingfuturesandderivativestrading,whichtodayaremajorcomponentsofthefinancialmarket.
FinancialassetpricingmodelshavebeenunderscrutinysincetheBlack-Scholes-MertonmodelwaswidelyblamedforthefailureofLongTermCapitalManagementin1998.10Thesemodelshaveevenbeenblamedforthebehaviourofentiremarkets–whenmanytradersareusingsimilarmodels,theytendtomakesimilardecisions.Theclaimisthatthishasincreasedthecoordinationofactivity(‘flockbehaviour’)andthecorrelationofassetpricesacrossmarkets,assetclasses,andgeographiessignificantlyoverthepasttwodecades.
Bankrunsarecitedassimilarexamplesofsharedbeliefsfuelling‘mobpsychology’inthegeneralpopulation.TheincreasedspeedofinformationflowsthroughthemarketprovidedbytheInternet,andtheubiquityofmodelledviewsofpricingaresignificantfactorsinincreasedcorrelationandthespeedwithwhichmarketcrashescannowoccur.Theconceptofcoordinatedactionsbyindividualsfacilitatedbyextraneousfactorswhicharenoteasytoexplainis(rathercharmingly)referredtobyfinancialanalystsas‘sunspots’.11
3.3AlternativeEconomicTheories
Alternativeeconomictheorieshavebeenbeingproposed,includingMandelbrot’s‘TurbulentMarketswithMemory’,12Minsky’s‘FinancialInstabilityHypothesis’,13andtheemergingfieldof‘ComplexityEconomics’.14Moderntheoristssuggestthat‘punctuatedequilibrium’orgrowthcyclesofboom-and-bust,maybeinherentpropertiesofahealthygrowingeconomy.Intheseviewsofeconomics,thecharacteristicsofthefinancialsystemitselfiswhatdefinesthefrequencyandseverityofcrises:i.e.financialcatastrophesarisefrom‘endogenous’characteristicsofthecomplexsystem,aswellas,andperhapsevenmorethan,‘exogenous’externalshocks.
3.4ComplexityEconomics
Thesealternativetheoriesproposeconsideringeconomicactivityasacomplexadaptivesystem.Some
10SeeMacKenzie(2006)pp218-242foranexaminationoftheLTCMcasestudy.
11Allen&Gale(2008)‘Theroleofsunspots’p76in
UnderstandingFinancialCrises.
12Mandelbrot&Hudson(2008).
13Minskyfirstrefutedtheefficientmarkethypothesiswithhis‘FinancialInstabilityHypothesis’in1936,whichis
adaptedbyCooper(2008)asabasisforimprovingcentralbankpolicy.
14OutlinedbySornette(2003)inWhyStockMarkets
Crash:CriticalEventsinComplexFinancialSystems.
UsingRealWorldScenariostoImprovetheResilienceofInvestmentPortfolios
5
evensuggestthatabetterconceptualmodelforeconomicactivitymightbebiologicalevolution.15Theseideasareembracedundertheterm‘ComplexityEconomics’orasanewmanifestationofalongstandingbranchoftheorytermed‘BehaviouralEconomics’.16Theeconomyisseenasacomplexsystem,andamarketcrashisacatastrophicfailure.
Evenwithoutanunderlyingtheoreticalbasis,theplausibilityandimpactofextremeshockscanbeassessedthroughscenariosthatincorporatereal-worldcharacteristicsofcausalprocessesandinterconnectivity.
4ThePastisNoGuidetotheFuture
Statisticaldataofpastyieldsandassetperformanceareusedtocalibratemanyofthetraditionalmodelsofinvestmentriskpremiums.Reliabletradingdataisavailabledatingbacktothe1970s-around50years.Thatperiodhasseenmanyextremeevents,crises,externalities,andblips.Itcouldbeassumedthatthemostextremeeventsobservedinthatperiodrepresentthe‘1-in-50’annualextreme.Butwhataboutthe‘1-in-100’–canwejustextrapolateusinganassumptionaboutthedistributions?Philosophicallywedonotbelievethatthepast50yearscontainsenoughextremeexamplestofullypopulatethetailriskfromstatisticalexperience.Thereisliteratureconcernedwithhowtomakeallowancefor‘strategicsurprise’andnewtypesofcrisesthathavenotbeenseenbefore,referencing‘BlackSwans’;17‘DragonKings’,18‘UnknownUnknowns’,19and‘Non-ModelledRisks’.20Manyorganizationsexpendsignificantresourcestomonitor‘emergingrisks’andthethreatstheyface,asawayoftryingtoanticipatepotentialnewthreatsthatcouldtriggerdevaluationevents.Ourapproachistoconsiderauniverseofpotentialthreats,whichallowsforcompletelyunforeseensurprise,butbyexhaustiveanalysisandresearchtocreateauseabletaxonomyofcausalissuesthathaveplausiblecapabilityofcausingeventsinthenextseveralyears.Eachofthesearethentestedwiththedevelopmentofascenariothatenablesaportfoliostresstestthatillustratesthosethreats.
5LimitationsofTraditionalRiskModels
Whenanalysingportfolios,differentmodellingtechniquescanbeemployedtoprovideaviewofrisksassociatedwithit.Commonlyadoptedriskmanagementtechniquesaredesignedtoevaluatea
15Beinhocker(2007)apes(asitwere)Darwin’sTheOriginofSpeciesintitlinghisbookTheOriginofWealth.
16TheEconomistdescribesthestateoftheartofapplyingpsychologystudiestoeconomicsundertheumbrellaofBehavioralEconomics,inFinancialEconomics:
EfficiencyandBeyond’,p73-74,July18,2009.
portionoftherisk,butnotallofit.Forassetmanagers,adelicatebalancemustbestruckbetweenensuringthataninvestmentisprofitablewhileaccountingforenoughrisktoensurethatasufficientbuffercanbeputinplacetoprotectthem.Typically,astatisticalapproachistakentoassesstheriskassociatedwithaninvestment,forexamplethelikelihoodofaninvestmentfailing.Bysettingarangeoflikelihoodsinwhichassetmanagersareconfidentininvesting,thisbuildsariskappetite.Howeverstatisticalviewsmaycontaininsufficientinformationaboutthepotentialforfailure.Whenamajordevaluationeventoccurs,itcanhavefarreachingeffects,astailriskshavepotentialtobebeyondanassetmanager’sriskappetite.
Asdescribedabove,theGFCisanexampleofsuchahighly-correlatedcatastrophiceventoutsideofstatisticalbounds.Atthetimevalue-at-riskmodelscaptured99%oftheriskforabundleofsecurities.Itdidnottakeintoaccountthe1-in-100(year)eventwhichinthiscasewasamassdefaultonmortgagesintheUShousingmarket.Fromamodellingperspective,the1-in-100eventmayhavebeenoverlookedwhenthesecuritiesweretraded,withpeopleunder-pricingthetailrisks.Investorsandregulatorshavelearntsomelessonsandnowapplybetterriskmanagementprinciples.Forexample,therearenowstrictrulesinplacetolimitspeculativeinvestmentsanddangerouscorporateculturedrivingaggressiverisk-taking.Theserulesprovideagreaterlevelofmarketoversightandtighterrestrictionsondisclosurepolicies.
Manymodellingmethodsarenotdesignedtomodelextremetailrisks.Macroeconomicgeneralizedequilibriummodelscanbestressedwithmoderatevariations,butcanfailtoresolvewhenthevariationsexceedthehistoricalrangeofobservedvariation,particularlyinthecaseofhighlyimprobablebuthighlyimpactfulaccidentsornaturalphenomena,i.e.acatastrophe.
Inacontextofprivatemarkets,investorshadinvestedinavarietyofunconventionalassetclassesthattheythoughtofferedthemdiversificationfromequities,priortotheGFC.Inthisevent,theyweredisappointedtodiscoverduringthe2008–09equitybearmarket,thisdiversificationwaslargelyillusory.Forthatreason,webelievethattheassetclassesthatprovidethemostrobustdiversificationfromequitiesarethosewhoseunderlyingcashflowsareinsensitive
17Taleb(2010).
18Sornette(2009).
19Rumsfeld(2002).
20ABI(2014).
UsingRealWorldScenariostoImprovetheResilienceofInvestmentPortfolios
6
tothebusinesscycle.Forexample,inaprivatemarketuniverse,infrastructureisanassetclassthatcanbeeconomicallyinsensitivethuslesscyclical.Manyunderlyinginfrastructureassetssuchasenergygeneratingfarms,schools,hospitalsandutilitieslikeelectricitygridshavecashflowsthataredrivenbylong-termgovernment-backedcontractsorsubsidies,furtherlinkedwithinflation.
MorerecentlyduringtheCOVID-19marketturmoilin2020,lookingatsocialinfrastructureforexample,wecanseehowwellitfaredwhenequitiesandrealestatewereexperiencinglargepricedeclines.Intermsofareturnsperspective,mostinvestorsrelyexclusivelyonassetsthatarelistedonpublicmarkets,buthigherreturnsareoftenavailablefromunlistedorprivatelyheldassetslikeprivateequity,infrastructure,directproperty,privatecreditandnaturalresources.Privateassetstypicallyofferhigherreturnsthantheirlistedversionsbecauseinvestorsreceivean‘illiquiditypremium’incompensationforlosingtheabilitytoreleasetheircapitalatashortnotice.Thispremiumtypicallyadds2–4%toreturns,dependingontheassetclass.Strongdemandforprivatemarketsinrecentyearsindicatesthatthispremiummaybenowatthelowendoftherange,however,giventhelowexpectedreturnselsewhereoveralonghorizon.
Investorssometimesmistakenlybelievethatbecauseprivateassetsareilliquidthismeansthattheygetnocashreturnintheshortterm.Infact,manyprivateassetsofferastableincomereturnduringtheperiodtheyareheld.Oneofthebiggestchallengesforinvestorsinprivateassetsisidentifyingandaccessingthebestinvestmentopportunitiesgivenitsreturnandriskappetite.Thedifferenceinperformancebetweentopandbottom-quartilemanagersismoresignificantforprivateassetclassesthanitisforlistedmarkets.Hence,managerselectioniscriticalasthefundswiththebesttrackrecordscanoftenbehardtoaccess.
Intermsofmarkettransparencyoftheprivatemarkets,therehasbeengrowingtransparencyinprivateassets,assuggestedbyHudsonandDeSilva(2016),makingthemmoreviableduetodiversificationeffects,yield,andrisktolerance.Ingeneral,thetrendisthatbetterinformationcomingoutofprivatemarketsisallowingmarketstobemoreliquid.However,theproblemremainsthattherearestillgapsinthereportingperiodsasprivateassetstakeadiscreteapproachtopublishinginformation.Unliketheusualmethodsofmodellingrisksforpublicassets,theyacknowledgethattheseprivateassetsaremorevulnerabletolowprobability,highimpacttail
21Rebonato(2010)
risks.Thissuggeststhatadifferentriskmodellingapproachisrequiredforthesetypesofportfolios.
6TaxonomyofPortfolioRisks
Singlevariablestresstests(e.g.asuddenreductionininterestrate)canbeappliedtoaportfoliotoensurethataninvestmentisrobustenoughtoweatherashock.Howeverreal-worldshocksrarelyaffectasinglevariable.Theunderlyingcauseofthereductionininterestratewillalsoaffectothereconomicvariables,anddependingonthecause,canhavequitediverseeffects.Inordertoprepareforthetailrisksitisnecessarytotakecombinationsofextremeevents,whichcanhavemultiplestressvariablesaffectinganinvestmentportfolio.Theinterrelationshipbetweentheimpactfulvariableschangeswiththenatureoftheunderlyingrealworldcauseoftheshock.
Rebonatoexploresthedifficultyofstresstestingrisksandarguesfor‘coherence’instresstestvariablesconsistentwithusingrealandhypotheticalscenarios.21Event-treeapproachesofrandomlystressingmultiplevariablesbecomerapidlyunfeasiblewithmorethanahandfulofvariables,tobranchouteveryeventthatcanaffectaportfolio,especiallyatthesametime.Insteadwefocusonspecificeventsmodelledafterrealworldscenarios.
Amoregroundedapproachtakesanunderstandingoftheuniverseofpotentialexogenousandendogenousshocksandabroadevaluationofthecausaldriversoftheseshocks.Theunderlyingcausesofsystemicriskswehavepreviouslytermed‘econotagions’.
CCRShasreviewedthelandscapeofrisktoattempttoidentifythebroadcategoriesofcausalthreatsthatcouldpotentiallycauseasocialoreconomiccrisiswiththepotentialtoimpactthereturnsofinvestmentportfoliosandindividualassets.
Thisstudy,ongoingsince2014,hasinvolvedmultipleresearchapproachesandhasresultedintwopublications.Identifyingthreatsinvolvedanextensivehistoricalreviewofcausesofsocialandeconomicdisruptionoverthepastthousandyears.Thiswasaugmentedwithareviewofcatastrophecataloguesanddatabases,aprecedentreview,astudyofcounter-factualtheories,andapeerreviewprocess.
Figure1:Cambridgetaxonomyofbusinessrisks,v2.0.22.
22CCRS(2019
Figure1showstheCambridgeTaxonomyofBusinessRisks.Itisorganisedinahierarchyofcausalsimilarity,into6PrimaryClasses,37Families,and170RiskTypes.Thestructurecanbefurthersubdividedintomoregranulartypesasrequired.Thisstructureprovidesauniversefromwhichtoselectscenariosofinteresttostressaportfolio.
Forexample,thegeopoliticalclassofscenariosconsiderstheriskassociatedwithnotonlytherelationsofacompanytoagoverningbody,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021高考化學(xué)(廣東專用)二輪考點(diǎn)突破-第五部分-化學(xué)實(shí)驗(yàn)-專題二十三-實(shí)驗(yàn)方案的設(shè)計(jì)與評(píng)價(jià)-
- 2020采購(gòu)員個(gè)人工作計(jì)劃范文
- 2025年人教版八年級(jí)數(shù)學(xué)寒假預(yù)習(xí) 第12講 菱形的性質(zhì)與判定(2個(gè)知識(shí)點(diǎn)+6大考點(diǎn)舉一反三+過關(guān)測(cè)試)
- 學(xué)?;瘜W(xué)教師個(gè)人工作總結(jié)
- 2020年小學(xué)教學(xué)論文開題報(bào)告范文
- 【導(dǎo)與練】2021屆高三物理大一輪復(fù)習(xí)(人教版適用)訓(xùn)練題:章末定時(shí)練3
- 陜西省渭南市尚德中學(xué)2024-2025學(xué)年高一上學(xué)期第二次階段性物理試卷(含答案)
- 遼寧省沈陽(yáng)市名校2024-2025學(xué)年七年級(jí)上學(xué)期期末考試地理試題(含答案)
- 吉林省松原市前郭五中2024~2025學(xué)年高二上期末考試 生物(含答題卡、答案)
- 【名師金典】2022新課標(biāo)高考生物總復(fù)習(xí)限時(shí)檢測(cè)15孟德爾的豌豆雜交實(shí)驗(yàn)(二)-
- 1.1、供應(yīng)商管理控制流程與風(fēng)險(xiǎn)控制流程圖
- 初二年級(jí)勞動(dòng)課教案6篇
- 箱變遷移工程施工方案
- 北師大版九年級(jí)數(shù)學(xué)下冊(cè)《圓的對(duì)稱性》評(píng)課稿
- 《遙感原理與應(yīng)用》期末考試試卷附答案
- 物流無人機(jī)垂直起降場(chǎng)選址與建設(shè)規(guī)范(征求意見稿)
- 工程分包管理制度
- 2023年湖南成人學(xué)位英語(yǔ)考試真題
- GB/T 9452-2023熱處理爐有效加熱區(qū)測(cè)定方法
- 肺炎支原體肺炎診治專家共識(shí)
- 藥物化學(xué)(第七版)(全套課件1364P)
評(píng)論
0/150
提交評(píng)論