2024屆廣西壯族自治區(qū)崇左市達(dá)標(biāo)名校中考一模數(shù)學(xué)試題含解析_第1頁
2024屆廣西壯族自治區(qū)崇左市達(dá)標(biāo)名校中考一模數(shù)學(xué)試題含解析_第2頁
2024屆廣西壯族自治區(qū)崇左市達(dá)標(biāo)名校中考一模數(shù)學(xué)試題含解析_第3頁
2024屆廣西壯族自治區(qū)崇左市達(dá)標(biāo)名校中考一模數(shù)學(xué)試題含解析_第4頁
2024屆廣西壯族自治區(qū)崇左市達(dá)標(biāo)名校中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆廣西壯族自治區(qū)崇左市達(dá)標(biāo)名校中考一模數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.利用運(yùn)算律簡便計算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–19982.如圖,某地修建高速公路,要從A地向B地修一條隧道(點(diǎn)A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機(jī)從A地出發(fā),垂直上升800米到達(dá)C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米3.若x,y的值均擴(kuò)大為原來的3倍,則下列分式的值保持不變的是()A. B. C. D.4.計算3×(﹣5)的結(jié)果等于()A.﹣15B.﹣8C.8D.155.如圖,正方形ABCD內(nèi)接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.6.如圖,數(shù)軸上有M、N、P、Q四個點(diǎn),其中點(diǎn)P所表示的數(shù)為a,則數(shù)-3a所對應(yīng)的點(diǎn)可能是()A.M B.N C.P D.Q7.如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為()A.8 B.8 C.4 D.68.如圖,這是根據(jù)某班40名同學(xué)一周的體育鍛煉情況繪制的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,可得到該班40名同學(xué)一周參加體育鍛煉時間的眾數(shù)、中位數(shù)分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.59.如圖,已知E,B,F(xiàn),C四點(diǎn)在一條直線上,,,添加以下條件之一,仍不能證明≌的是A. B. C. D.10.實(shí)數(shù)a,b在數(shù)軸上對應(yīng)的點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在兩個同心圓中,三條直徑把大、小圓都分成相等的六個部分,若隨意向圓中投球,球落在黑色區(qū)域的概率是______.12.反比例函數(shù)y=與正比例函數(shù)y=k2x的圖象的一個交點(diǎn)為(2,m),則=____.13.如圖,在⊙O中,點(diǎn)B為半徑OA上一點(diǎn),且OA=13,AB=1,若CD是一條過點(diǎn)B的動弦,則弦CD的最小值為_____.14.因式分解:____________.15.如圖,點(diǎn)A,B在反比例函數(shù)(k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是______.16.分解因式:2a2﹣2=_____.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn)E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).18.(8分)如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過點(diǎn)C的切線互相垂直,垂足為D,AB,DC的延長線交于點(diǎn)E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.19.(8分)為支援雅安災(zāi)區(qū),某學(xué)校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學(xué)習(xí)用品共1000件,已知A型學(xué)習(xí)用品的單價為20元,B型學(xué)習(xí)用品的單價為30元.若購買這批學(xué)習(xí)用品用了26000元,則購買A,B兩種學(xué)習(xí)用品各多少件?若購買這批學(xué)習(xí)用品的錢不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?20.(8分)我們知道中,如果,,那么當(dāng)時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關(guān)系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?21.(8分)圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當(dāng)傘收緊時,點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開時,動點(diǎn)P由A向B移動;當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設(shè)AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設(shè)陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關(guān)于x的關(guān)系式(結(jié)果保留π).22.(10分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0)和B(3,0),與y軸交于點(diǎn)C,點(diǎn)D的橫坐標(biāo)為m(0<m<3),連結(jié)DC并延長至E,使得CE=CD,連結(jié)BE,BC.(1)求拋物線的解析式;(2)用含m的代數(shù)式表示點(diǎn)E的坐標(biāo),并求出點(diǎn)E縱坐標(biāo)的范圍;(3)求△BCE的面積最大值.23.(12分)如圖,二次函數(shù)y=ax2+2x+c的圖象與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3).(1)求該二次函數(shù)的表達(dá)式;(2)過點(diǎn)A的直線AD∥BC且交拋物線于另一點(diǎn)D,求直線AD的函數(shù)表達(dá)式;(3)在(2)的條件下,請解答下列問題:①在x軸上是否存在一點(diǎn)P,使得以B、C、P為頂點(diǎn)的三角形與△ABD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;②動點(diǎn)M以每秒1個單位的速度沿線段AD從點(diǎn)A向點(diǎn)D運(yùn)動,同時,動點(diǎn)N以每秒個單位的速度沿線段DB從點(diǎn)D向點(diǎn)B運(yùn)動,問:在運(yùn)動過程中,當(dāng)運(yùn)動時間t為何值時,△DMN的面積最大,并求出這個最大值.24.如圖,AB=AD,AC=AE,BC=DE,點(diǎn)E在BC上.求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】

根據(jù)乘法分配律和有理數(shù)的混合運(yùn)算法則可以解答本題.【題目詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【題目點(diǎn)撥】本題考查了有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確有理數(shù)混合運(yùn)算的計算方法.2、D【解題分析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【題目詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【題目點(diǎn)撥】本題考查解直角三角形的應(yīng)用﹣仰角俯角問題,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.3、D【解題分析】

根據(jù)分式的基本性質(zhì),x,y的值均擴(kuò)大為原來的3倍,求出每個式子的結(jié)果,看結(jié)果等于原式的即是答案.【題目詳解】根據(jù)分式的基本性質(zhì),可知若x,y的值均擴(kuò)大為原來的3倍,A、,錯誤;B、,錯誤;C、,錯誤;D、,正確;故選D.【題目點(diǎn)撥】本題考查的是分式的基本性質(zhì),即分子分母同乘以一個不為0的數(shù),分式的值不變.此題比較簡單,但計算時一定要細(xì)心.4、A【解題分析】

按照有理數(shù)的運(yùn)算規(guī)則計算即可.【題目詳解】原式=-3×5=-15,故選擇A.【題目點(diǎn)撥】本題考查了有理數(shù)的運(yùn)算,注意符號不要搞錯.5、B【解題分析】

連接OA、OB,利用正方形的性質(zhì)得出OA=ABcos45°=2,根據(jù)陰影部分的面積=S⊙O-S正方形ABCD列式計算可得.【題目詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.【題目點(diǎn)撥】本題主要考查扇形的面積計算,解題的關(guān)鍵是熟練掌握正方形的性質(zhì)和圓的面積公式.6、A【解題分析】解:∵點(diǎn)P所表示的數(shù)為a,點(diǎn)P在數(shù)軸的右邊,∴-3a一定在原點(diǎn)的左邊,且到原點(diǎn)的距離是點(diǎn)P到原點(diǎn)距離的3倍,∴數(shù)-3a所對應(yīng)的點(diǎn)可能是M,故選A.點(diǎn)睛:本題考查了數(shù)軸,解決本題的關(guān)鍵是判斷-3a一定在原點(diǎn)的左邊,且到原點(diǎn)的距離是點(diǎn)P到原點(diǎn)距離的3倍.7、D【解題分析】分析:連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點(diǎn)睛:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關(guān)鍵.8、A【解題分析】

根據(jù)中位數(shù)、眾數(shù)的概念分別求得這組數(shù)據(jù)的中位數(shù)、眾數(shù).【題目詳解】解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),即8;而將這組數(shù)據(jù)從小到大的順序排列后,處于20,21兩個數(shù)的平均數(shù),由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是9.故選A.【題目點(diǎn)撥】考查了中位數(shù)、眾數(shù)的概念.本題為統(tǒng)計題,考查眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會錯誤地將這組數(shù)據(jù)最中間的那個數(shù)當(dāng)作中位數(shù).9、B【解題分析】

由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應(yīng)相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【題目詳解】添加,根據(jù)AAS能證明≌,故A選項(xiàng)不符合題意.B.添加與原條件滿足SSA,不能證明≌,故B選項(xiàng)符合題意;C.添加,可得,根據(jù)AAS能證明≌,故C選項(xiàng)不符合題意;D.添加,可得,根據(jù)AAS能證明≌,故D選項(xiàng)不符合題意,故選B.【題目點(diǎn)撥】本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.10、D【解題分析】

根據(jù)數(shù)軸上點(diǎn)的位置,可得a,b,根據(jù)有理數(shù)的運(yùn)算,可得答案.【題目詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【題目點(diǎn)撥】本題考查了實(shí)數(shù)與數(shù)軸,利用有理數(shù)的運(yùn)算是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解題分析】

根據(jù)幾何概率的求法:球落在黑色區(qū)域的概率就是黑色區(qū)域的面積與總面積的比值.【題目詳解】解:由圖可知黑色區(qū)域與白色區(qū)域的面積相等,故球落在黑色區(qū)域的概率是=.【題目點(diǎn)撥】本題考查幾何概率的求法:首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計算陰影區(qū)域的面積在總面積中占的比例,這個比例即事件(A)發(fā)生的概率.12、4【解題分析】

利用交點(diǎn)(2,m)同時滿足在正比例函數(shù)和反比例函數(shù)上,分別得出m和、的關(guān)系.【題目詳解】把點(diǎn)(2,m)代入反比例函數(shù)和正比例函數(shù)中得,,,則.【題目點(diǎn)撥】本題主要考查了函數(shù)的交點(diǎn)問題和待定系數(shù)法,熟練掌握待定系數(shù)法是本題的解題關(guān)鍵.13、10【解題分析】

連接OC,當(dāng)CD⊥OA時CD的值最小,然后根據(jù)垂徑定理和勾股定理求解即可.【題目詳解】連接OC,當(dāng)CD⊥OA時CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=,∴CD=5×2=10.故答案為10.【題目點(diǎn)撥】本題考查了垂徑定理及勾股定理,垂徑定理是:垂直與弦的直徑平分這條弦,并且平分這條弦所對的兩段弧

.14、3(x-2)(x+2)【解題分析】

先提取公因式3,再根據(jù)平方差公式進(jìn)行分解即可求得答案.注意分解要徹底.【題目詳解】原式=3(x2﹣4)=3(x-2)(x+2).故答案為3(x-2)(x+2).【題目點(diǎn)撥】本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進(jìn)行二次分解,注意分解要徹底.15、【解題分析】試題解析:過點(diǎn)B作直線AC的垂線交直線AC于點(diǎn)F,如圖所示.∵△BCE的面積是△ADE的面積的2倍,E是AB的中點(diǎn),∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均為BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴點(diǎn)A的坐標(biāo)為(,3),點(diǎn)B的坐標(biāo)為(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【題目點(diǎn)撥】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積公式以及勾股定理.構(gòu)造直角三角形利用勾股定理巧妙得出k值是解題的關(guān)鍵.16、2(a+1)(a﹣1).【解題分析】

先提取公因式2,再對余下的多項(xiàng)式利用平方差公式繼續(xù)分解.【題目詳解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【題目點(diǎn)撥】本題考查了提公因式法和公式法進(jìn)行因式分解,一個多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時因式分解要徹底,直到不能分解為止.三、解答題(共8題,共72分)17、(1)見解析;(2)40°.【解題分析】

(1)根據(jù)角平分線的性質(zhì)可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進(jìn)而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進(jìn)而可得出∠ACB=2∠ECD=70°,再根據(jù)等腰三角形的性質(zhì)結(jié)合三角形內(nèi)角和定理即可求出∠A的度數(shù).【題目詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【題目點(diǎn)撥】本題考查了等腰三角形的判定與性質(zhì)、平行線的性質(zhì)以及角平分線.解題的關(guān)鍵是:(1)根據(jù)平行線的性質(zhì)結(jié)合角平分線的性質(zhì)找出∠EDC=∠ECD;(2)利用角平分線的性質(zhì)結(jié)合等腰三角形的性質(zhì)求出∠ACB=∠ABC=70°.18、(1)證明見解析;(2)【解題分析】

(1)連接OC,如圖,利用切線的性質(zhì)得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;(2)設(shè)⊙O半徑為r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用銳角三角函數(shù)的定義計算出∠COE=60°,然后根據(jù)扇形的面積公式,利用S陰影=S△COE﹣S扇形COB進(jìn)行計算即可.【題目詳解】解:(1)連接OC,如圖,∵CD與⊙O相切于點(diǎn)E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)設(shè)⊙O半徑為r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos∠COE=,∴∠COE=60°,∴S陰影=S△COE﹣S扇形COB=?3?3﹣.【題目點(diǎn)撥】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡記作:見切點(diǎn),連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.19、(1)購買A型學(xué)習(xí)用品400件,B型學(xué)習(xí)用品600件.(2)最多購買B型學(xué)習(xí)用品1件【解題分析】

(1)設(shè)購買A型學(xué)習(xí)用品x件,B型學(xué)習(xí)用品y件,就有x+y=1000,20x+30y=26000,由這兩個方程構(gòu)成方程組求出其解就可以得出結(jié)論.(2)設(shè)最多可以購買B型產(chǎn)品a件,則A型產(chǎn)品(1000﹣a)件,根據(jù)這批學(xué)習(xí)用品的錢不超過210元建立不等式求出其解即可.【題目詳解】解:(1)設(shè)購買A型學(xué)習(xí)用品x件,B型學(xué)習(xí)用品y件,由題意,得,解得:.答:購買A型學(xué)習(xí)用品400件,B型學(xué)習(xí)用品600件.(2)設(shè)最多可以購買B型產(chǎn)品a件,則A型產(chǎn)品(1000﹣a)件,由題意,得20(1000﹣a)+30a≤210,解得:a≤1.答:最多購買B型學(xué)習(xí)用品1件20、(1)當(dāng),時有最大值1;(2)當(dāng)時,面積有最大值32.【解題分析】

(1)由題意當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解決問題.

(2)設(shè)BD=x,由題意:當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【題目詳解】(1)由題意當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,

最大面積為×6×(16-6)=1.故當(dāng),時有最大值1;(2)當(dāng),時有最大值,設(shè),由題意:當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,∴拋物線開口向下∴當(dāng)時,面積有最大值32.【題目點(diǎn)撥】本題考查三角形的面積,二次函數(shù)的應(yīng)用等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建二次函數(shù)解決問題.21、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.【解題分析】

(1)根據(jù)題意,得AC=CN+PN,進(jìn)一步求得AB的長,即可求得x的取值范圍;(1)根據(jù)等邊三角形的判定和性質(zhì)即可求解;(3)連接MN、EF,分別交AC于B、H.此題根據(jù)菱形CMPN的性質(zhì)求得MB的長,再根據(jù)相似三角形的對應(yīng)邊的比相等,求得圓的半徑即可.【題目詳解】(1)∵BC=1分米,AC=CN+PN=11分米,∴AB=AC﹣BC=10分米,∴x的取值范圍是:0≤x≤10;(1)∵CN=PN,∠CPN=60°,∴△PCN是等邊三角形,∴CP=6分米,∴AP=AC﹣PC=6分米,即當(dāng)∠CPN=60°時,x=6;(3)連接MN、EF,分別交AC于B、H,∵PM=PN=CM=CN,∴四邊形PNCM是菱形,∴MN與PC互相垂直平分,AC是∠ECF的平分線,PB==6-,在Rt△MBP中,PM=6分米,∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.∵CE=CF,AC是∠ECF的平分線,∴EH=HF,EF⊥AC,∵∠ECH=∠MCB,∠EHC=∠MBC=90°,∴△CMB∽△CEH,∴=,∴,∴EH1=9?MB1=9?(6x﹣x1),∴y=π?EH1=9π(6x﹣x1),即y=﹣πx1+54πx.【題目點(diǎn)撥】此題主要考查了相似三角形的應(yīng)用以及菱形的性質(zhì)和二次函數(shù)的應(yīng)用,難點(diǎn)是第(3)問,熟練運(yùn)用菱形的性質(zhì)、相似三角形的性質(zhì)和二次函數(shù)的實(shí)際應(yīng)用.22、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當(dāng)m=1.5時,S△BCE有最大值,S△BCE的最大值=.【解題分析】分析:(1)1)把A、B兩點(diǎn)代入拋物線解析式即可;(2)設(shè),利用求線段中點(diǎn)的公式列出關(guān)于m的方程組,再利用0<m<1即可求解;(1)連結(jié)BD,過點(diǎn)D作x軸的垂線交BC于點(diǎn)H,由,設(shè)出點(diǎn)D的坐標(biāo),進(jìn)而求出點(diǎn)H的坐標(biāo),利用三角形的面積公式求出,再利用公式求二次函數(shù)的最值即可.詳解:(1)∵拋物線過點(diǎn)A(1,0)和B(1,0)(2)∵∴點(diǎn)C為線段DE中點(diǎn)設(shè)點(diǎn)E(a,b)∵0<m<1,∴當(dāng)m=1時,縱坐標(biāo)最小值為2當(dāng)m=1時,最大值為2∴點(diǎn)E縱坐標(biāo)的范圍為(1)連結(jié)BD,過點(diǎn)D作x軸的垂線交BC于點(diǎn)H∵CE=CD∴H(m,-m+1)∴當(dāng)m=1.5時,.點(diǎn)睛:本題考查了二次函數(shù)的綜合題、待定系數(shù)法、一次函數(shù)等知識點(diǎn),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,會用方程的思想解決問題.23、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);當(dāng)t=時,S△MDN的最大值為.【解題分析】

(1)把A(-1,0),C(0,3)代入y=ax2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論