版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ChapterV
Residue
§1
isolatedsingularity
Functiondoesnotresolvethepointof
singularity.
Ifthefunction
f(z)
althoughnoresolution
in
z
0,
z
0
inacertainneighborhoodtothecenter
0
<|
z
z
0|
withintheanalytic
everywhere,
then
z
0
as
f(z)
ofthe
isolated
singularity.
Thefunction
f(z)
initsisolatedsingularity
z
0
totheheartoftheneighborhood
0
<|
z
z
0|
bestartedintoaLaurent
series.
Accordingtothedifferentexpansionconditionsforclassificationofisolated
singularities.
Removablesingularity
freeiftheLaurentseriesin
z
z
0
ofthenegativepowerkey,
thenisolated
Legislationknownasthesingularpoint
z
0
f(z)
oftheremovablesingularity.
Then,
f
(z)
=
c
0
+
c
1
(z
z
0)
+...+
c
n
(z
z
0)
n
+....
0
<|
z
z
0
|
Inthecirculardomain
|
z
z
0
|
inthere
f
(z)
=
c
0
+
c
1
(z
z
0
)+...+
c
n
(z
z
0)
n
+...,
Thusthefunction
f(z)
at
z
0
onaresolutionof
the.
So
z
0
iscalledremovable
singularity.
2.
Pole
intheLaurentseries,ifonlyalimitednumberof
z
z
0
ofthenegativepoweritems
Andoneonthe
(z
z
0)
1
themaximumpowerforthe
(z
z
0)
m,
thatis
f
(z)
=
c
m
(z
z
0)
m
+...+
c
2
(z
z
0)
2
+
c
1
(z
z
0)
1
+
c
0
+
c
1
(z
z
0
)+...
(M
1,
c
m
0),
thenisolatedsingularpoint
z
0
iscalledthefunction
f(z)
the
m-classpole.
Thiscanalsobewrittenas
Where
g(z)
=
c
-
m
+
c
-
m
+1
(z
-
z
0)
+
c
-
m
+2
(z
-
z
0)2
+...,
In
|
z
-
z
0
|
<d
areanalyticfunctions
within,
and
g(z
0)
0.
Conversely,
whenafunction
f(z)
canbeexpressedas
(*)form,
and
g(z
0)
0,
then
z
0
is
f(z)
the
m-class
pole.
If
z
0
is
f(z)
the
poles,
by
(*),
we
have
3.
Thenatureofsingularity
IftheLaurentseriescontainsaninfinitenumberof
z-
z
0
ofthenegativepower
key,
then
z
0
iscalledanisolatedsingularity
f(z)
thenatureof
singularity.
In
summary:
Wecanusethislimittodistinguishthedifferentsituationsofthetypeisolatedsingularity.
4.A
function
of
therelationshipbetweenthezeroandpole
Isnotidenticallyequaltozeroanalyticfunction
f(z)
canbeexpressedasif
f
(z)
=
(z
z
0)
m
(z),
where
(z)
analyticin
z
0
and
(z
0)
0,
m
isapositive
integer,
then
z
0
as
f(z)
of
m-level
zero.
Forexample,when
f
(z)
=
z(z
1)
3
時(shí),
z
=0
and
z
=1
isitsoneandthree
zeros.
Accordingtothis
definition,
wecangetthefollowing
conclusions:
If
f(z)
analytic
in
z
0,
then
z
0
is
f(z)
of
m-level
isnecessaryandsufficientconditionzero
f
(n)(z
0)
=
0,
(n
=0,1,2,...,
m
1),
f
(m)(z
0)
0.
Thisis
because,
if
f(z)
at
z
0
resolution,
youwillbeabletostartaneighborhoodof
z
0
fortheTaylor
series:
f(z)
=
c
0
+
c
1
(z
z
0
)+...+
c
m
(z
z
0)
m
+...,
EasyCard
z
0
is
f(z)
of
m-level
necessaryandsufficientconditionzerocoefficientoftheformer
m
c
0
=
c
1
=...=
c
m
1
=
0,
c
m
0,
whichisequivalentto
f
(n)(z
0)
=
0,
(n
=0,1,2,...,
m
1),
f
(m)(z
0)
0.
Forexample,
z
=1
is
f(z)
=
z
3
-1
zero,
because
f
'(1)=
3
z
2
|
z
=1=3
0,
so
z
=1
isknown
f(z)
ofazero
.
Since
f(z)
=
(z
-
z
0)
m
j(z)
of
j(z)
analytic
in
z
0,
and
j(z
0)
0,
soit'sintheneighborhoodof
z0
isnot
zero.
Thisbecause
(z)
analyticin
z
0,
z
0
willbein
continuous,
sogiven
So
f
(z)
=
(z
z
0)
m
(z)z
0
intheneighborhoodtotheheartisnot
zero,
thatisnotidentically
Zerosofanalyticfunctionsofzerois
isolated.
Theorem
If
z
0
is
f(z)
the
m-class
pole,
then
z
0
isthe
m-level
zero,
Inturnset
up.
Determinethefunctionofthistheoremprovidesasimplepole
method.
Example
2
Example
3
To
Discussthefunction
In
DepartmentofState.
5.
FunctionInfinitybehavior
ifthefunction
f(z)
atinfinity
z
Totheheartoftheneighborhood
R
<|
z
|
withinthe
resolution,
saidthepoint
as
f(z)
oftheisolated
singularity.
Totransform
Theexpansionofthe
z
planetotheheart
neighborhood
R
<|
z
|<+
mappedtoexpandthe
w
planetotheoriginofheartNeighborhood:
Another.
Inthis
way,
wecantakeheartintheneighborhoodto
R
<|
z
|
on
f(z)researchintothe
Within
(w)
for
research.
Clearly
(w)
in
Withintheresolution,
so
w
=0
isanisolated
singularity.
f(z)
atinfinity
z
Thetypeofsingularpoint
Equivalentto
(w)
at
w=0
thesingularitytype.
That
z
is
f(z)
ofremovable
singularities,
poles,orthenatureof
singularity,
totallylimit
Theexistenceof
(finitevalue),
forinfinityortheinfinitedoesnotexistarenot
determined.
Example
1
Example
2
Example
3
§2
residue
Definitionoftheresidueandtheresidue
theorem,
ifthefunction
f(z)
z
0
in
aneighborhoodof
D,
Resolution,
thentheCauchyintegraltheorem
However,
if
z
0
is
f(z)
ofanisolatedsingularity,
Thenalongthecenter
z
0
ofaneighborhoodto
0
<|
z
z
0|
<R
z
0
containsanyofabeingasimpleclosedcurve
C
oftheintegral
Generallynotequalto
zero.
Therefore
f
(z)
=...+
c
n
(z
z
0)
n
+...+
c
1
(z
z
0)
1
+
C
0
+
c
1
(z
z
0
)+...+
c
n
(z
z
0)
n
+...
0
<|
z
z
0
|
<R
Bothendsofthe
pointsonebyone
alongthe
C:
That
C
1
as
f(z)
z
0
inthe
residue,
denotedbyRes
[f(z),z
0],
ie
Theorem1
(ResidueTheorem)
Setfunction
f(z)
inregion
D,
exceptafinitenumberofisolatedsingularpoint
z
1,
z
2,
...,
z
n
analyticeverywhere
outside.
C
is
D,
allsurroundedbyapositivesingularsimpleclosed
curve,
then
D
z
1
z
2
z
3
z
n
C
1
C
2
C
3
C
n
C
[Evidence]
tothe
C
intheisolatedsingularpoint
z
k(k
=1,2,...,
n)
areincludedwitheachother
Tothesimpleclosedcurve
C
k
around
up
thereundercompositeclosed-circuittheorems
Notethattheconditionsofthetheoremtobesatisfied.
Suchas
Cannotapplytheresiduetheorem.
Demandfunctionintheisolatedsingularity
z
0
OfficeoftheresiduethatisseekingitsLaurentseriesin
(Z
z
0)
1
termcoefficient
c
1
can
be.
Butifyouknowthetypeofsingularpoint
of
Seekingtostayafewmaybemore
favorable.
If
z
0
is
f(z)
oftheremovablesingularity,
Then
Res
[f(z),z
0]
=
0.
If
z
0
isthenatureof
singularity,
thenhadtobestartedbyLaurent
series.
If
z
0
is
Pole,
therearesomerequirements
c
1
useful
rule.
2.
Residuecalculationrules
Rule
1
if
z
0
is
f
(z)
ofapole,
Then
Rule
2
If
z
0
is
f
(z)
the
m-class
pole,
then
In
fact,
f
(z)
=
c
m
(z
z
0)
m
+...+
c
2
(z
z
0)
2
+
c
1
(z
z
0)
1
+
c
0
+
c
1
(z
z
0
)+...,
(Z
z
0)
m
f(z)
=
c
m
+
c
m
+1
(z
z
0
)+...+
c
1
(z
z
0)
m
1
+
c
0
(z
z
0)
m
+...,
Sothatbothendsofthe
z
z
0,
therightendofthelimitis
(m
1)!
C
1,
bothendsofthedividedby
(m
1)!
That
Res
[f(z),z
0],
whichmayrule
2,
when
m
=
1,
istherule
1.
Thatwas
Rule
3.
Bytherule
1,
may
Wecanalsousetherulestoseektoremainthenumber
3:
Thisis
simpler
than
someof
therules
1.
Example
5
Solution:
So
Originalstyle
=
Example
4
Solution:
z=0
isapole.
3.
Infinityresidue
setfunction
f(z)
intheringdomain
R
z
|<
Analytic,
C
fortheringareaaroundtheoriginofanyofthesimpleclosed
curve,
thentheintegral
Thevalue
hasnothingtodo
with
C,
called
f(z)
pointsin
residue,
denoted
f(z)
intheringdomain
R
z
|<
Analytic:
Interpretedasaringaroundthearea
Asimpleclosedcurveofany.
That
is,
f(z)
tostay
in
pointisequaltoitsnumberofpointstothe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中型臭氧設(shè)備購買合同范例
- 農(nóng)業(yè)設(shè)備供貨合同范例
- 冷庫設(shè)備購銷合同范例
- 個(gè)人借還款合同范例
- 買賣家具建材合同范例
- 減肥產(chǎn)品訂購合同范例
- 全款買房交易合同范例
- 2024年01月江蘇2024年浙江泰隆商業(yè)銀行社會招考(蘇州)筆試歷年參考題庫附帶答案詳解
- 信用調(diào)查合同范本
- 親戚買房寫合同范例
- 2025年中國山泉水市場前景預(yù)測及投資規(guī)劃研究報(bào)告
- GB/T 18109-2024凍魚
- 2025年八省聯(lián)考數(shù)學(xué)試題(原卷版)
- 重慶市2025屆高三第一次聯(lián)合診斷檢測英語試卷(含解析含聽力原文無音頻)
- 《榜樣9》觀后感心得體會二
- 天津市部分區(qū)2024-2025學(xué)年九年級(上)期末物理試卷(含答案)
- 一氧化碳中毒培訓(xùn)
- 保潔服務(wù)質(zhì)量與服務(wù)意識的培訓(xùn)
- 突發(fā)公共衛(wèi)生事件衛(wèi)生應(yīng)急
- 《景觀設(shè)計(jì)》課件
- CONSORT2010流程圖(FlowDiagram)【模板】文檔
評論
0/150
提交評論