2024屆湖北省云夢(mèng)縣畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
2024屆湖北省云夢(mèng)縣畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
2024屆湖北省云夢(mèng)縣畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
2024屆湖北省云夢(mèng)縣畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
2024屆湖北省云夢(mèng)縣畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆湖北省云夢(mèng)縣畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.甲骨文是我國(guó)的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對(duì)稱的是()A. B. C. D.2.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-23.一個(gè)圓錐的底面半徑為,母線長(zhǎng)為6,則此圓錐的側(cè)面展開圖的圓心角是()A.180° B.150° C.120° D.90°4.如果(,均為非零向量),那么下列結(jié)論錯(cuò)誤的是()A.// B.-2=0 C.= D.5.下列美麗的圖案中,不是軸對(duì)稱圖形的是()A. B. C. D.6.已知拋物線y=ax2+bx+c(a<0)與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),頂點(diǎn)坐標(biāo)為(1,n),則下列結(jié)論:①4a+2b<0;②﹣1≤a≤;③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)7.如圖,已知,為反比例函數(shù)圖象上的兩點(diǎn),動(dòng)點(diǎn)在軸正半軸上運(yùn)動(dòng),當(dāng)線段與線段之差達(dá)到最大時(shí),點(diǎn)的坐標(biāo)是()A. B. C. D.8.下列運(yùn)算中正確的是()A.x2÷x8=x?6 B.a(chǎn)·a2=a2 C.(a2)3=a5 D.(3a)3=9a39.從邊長(zhǎng)為的大正方形紙板中挖去一個(gè)邊長(zhǎng)為的小正方形紙板后,將其裁成四個(gè)相同的等腰梯形(如圖甲),然后拼成一個(gè)平行四邊形(如圖乙)。那么通過計(jì)算兩個(gè)圖形陰影部分的面積,可以驗(yàn)證成立的公式為()A. B.C. D.10.下列計(jì)算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x11.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個(gè)交點(diǎn),則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或112.已知二次函數(shù)y=ax1+bx+c+1的圖象如圖所示,頂點(diǎn)為(﹣1,0),下列結(jié)論:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根為x1=x1=﹣1;⑤若點(diǎn)B(﹣,y1)、C(﹣,y1)為函數(shù)圖象上的兩點(diǎn),則y1>y1.其中正確的個(gè)數(shù)是()A.1 B.3 C.4 D.5二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.在函數(shù)y=xx14.如圖,直線a∥b,∠BAC的頂點(diǎn)A在直線a上,且∠BAC=100°.若∠1=34°,則∠2=_____°.15.可燃冰是一種新型能源,它的密度很小,可燃冰的質(zhì)量?jī)H為.數(shù)字0.00092用科學(xué)記數(shù)法表示是__________.16.已知關(guān)于x的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則a的值是______.17.七巧板是我國(guó)祖先創(chuàng)造的一種智力玩具,它來源于勾股法,如圖①整幅七巧板是由正方形ABCD分割成七小塊(其中:五塊等腰直角三角形、一塊正方形和一塊平行四邊形)組成,如圖②是由七巧板拼成的一個(gè)梯形,若正方形ABCD的邊長(zhǎng)為12cm,則梯形MNGH的周長(zhǎng)是cm(結(jié)果保留根號(hào)).18.分解因式:__________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),并與x軸交于另一點(diǎn)C(點(diǎn)C點(diǎn)A的右側(cè)),點(diǎn)P是拋物線上一動(dòng)點(diǎn).(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);(2)若點(diǎn)P在第二象限內(nèi),過點(diǎn)P作PD⊥軸于D,交AB于點(diǎn)E.當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),線段PE最長(zhǎng)?此時(shí)PE等于多少?(3)如果平行于x軸的動(dòng)直線l與拋物線交于點(diǎn)Q,與直線AB交于點(diǎn)N,點(diǎn)M為OA的中點(diǎn),那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.20.(6分)如圖,將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.21.(6分)如圖1,在等邊三角形中,為中線,點(diǎn)在線段上運(yùn)動(dòng),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),使得點(diǎn)的對(duì)應(yīng)點(diǎn)落在射線上,連接,設(shè)(且).(1)當(dāng)時(shí),①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數(shù)量關(guān)系,并加以證明;(2)當(dāng)時(shí),直接寫出線段,,之間的數(shù)量關(guān)系.22.(8分)如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.求證:AB=DC;試判斷△OEF的形狀,并說明理由.23.(8分)為進(jìn)一步打造“宜居重慶”,某區(qū)擬在新竣工的矩形廣場(chǎng)的內(nèi)部修建一個(gè)音樂噴泉,要求音樂噴泉M到廣場(chǎng)的兩個(gè)入口A、B的距離相等,且到廣場(chǎng)管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示.請(qǐng)?jiān)诖痤}卷的原圖上利用尺規(guī)作圖作出音樂噴泉M的位置.(要求:不寫已知、求作、作法和結(jié)論,保留作圖痕跡,必須用鉛筆作圖)24.(10分)如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點(diǎn),交AC于E點(diǎn),OC=OD.(1)若,DC=4,求AB的長(zhǎng);(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數(shù).25.(10分)(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動(dòng)點(diǎn)E(t,0)過點(diǎn)E作平行于y軸的直線l與拋物線、直線AD的交點(diǎn)分別為P、Q.(1)求拋物線的解析式;(2)當(dāng)0<t≤8時(shí),求△APC面積的最大值;(3)當(dāng)t>2時(shí),是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形與△AOB相似?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.26.(12分)如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點(diǎn)E.(1)求證:AE=CE;(2)若tanD=3,求AB的長(zhǎng).27.(12分)今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的m家商業(yè)連鎖店進(jìn)行評(píng)估,將各連鎖店按照評(píng)估成績(jī)分成了A、B、C、D四個(gè)等級(jí),繪制了如圖尚不完整的統(tǒng)計(jì)圖表.評(píng)估成績(jī)n(分)

評(píng)定等級(jí)

頻數(shù)

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據(jù)以上信息解答下列問題:(1)求m的值;(2)在扇形統(tǒng)計(jì)圖中,求B等級(jí)所在扇形的圓心角的大小;(結(jié)果用度、分、秒表示)(3)從評(píng)估成績(jī)不少于80分的連鎖店中任選2家介紹營(yíng)銷經(jīng)驗(yàn),求其中至少有一家是A等級(jí)的概率.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】試題分析:A.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D.不是軸對(duì)稱圖形,故本選項(xiàng)正確.故選D.考點(diǎn):軸對(duì)稱圖形.2、A【解題分析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點(diǎn):解一元二次方程-因式分解法.3、B【解題分析】

解:,解得n=150°.故選B.考點(diǎn):弧長(zhǎng)的計(jì)算.4、B【解題分析】試題解析:向量最后的差應(yīng)該還是向量.故錯(cuò)誤.故選B.5、A【解題分析】

根據(jù)軸對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【題目詳解】解:A、不是軸對(duì)稱圖形,故本選項(xiàng)正確;B、是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D、是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選A.【題目點(diǎn)撥】本題考查了軸對(duì)稱圖形的概念,軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合.6、C【解題分析】

①由拋物線的頂點(diǎn)橫坐標(biāo)可得出b=-2a,進(jìn)而可得出4a+2b=0,結(jié)論①錯(cuò)誤;

②利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征結(jié)合b=-2a可得出a=-,再結(jié)合拋物線與y軸交點(diǎn)的位置即可得出-1≤a≤-,結(jié)論②正確;

③由拋物線的頂點(diǎn)坐標(biāo)及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進(jìn)而可得出對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;

④由拋物線的頂點(diǎn)坐標(biāo)可得出拋物線y=ax2+bx+c與直線y=n只有一個(gè)交點(diǎn),將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn),進(jìn)而可得出關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合④正確.【題目詳解】:①∵拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,n),

∴-=1,

∴b=-2a,

∴4a+2b=0,結(jié)論①錯(cuò)誤;

②∵拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0),

∴a-b+c=3a+c=0,

∴a=-.

又∵拋物線y=ax2+bx+c與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),

∴2≤c≤3,

∴-1≤a≤-,結(jié)論②正確;

③∵a<0,頂點(diǎn)坐標(biāo)為(1,n),

∴n=a+b+c,且n≥ax2+bx+c,

∴對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;

④∵拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,n),

∴拋物線y=ax2+bx+c與直線y=n只有一個(gè)交點(diǎn),

又∵a<0,

∴拋物線開口向下,

∴拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn),

∴關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合④正確.

故選C.【題目點(diǎn)撥】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點(diǎn)以及二次函數(shù)的性質(zhì),觀察函數(shù)圖象,逐一分析四個(gè)結(jié)論的正誤是解題的關(guān)鍵.7、D【解題分析】

求出AB的坐標(biāo),設(shè)直線AB的解析式是y=kx+b,把A、B的坐標(biāo)代入求出直線AB的解析式,根據(jù)三角形的三邊關(guān)系定理得出在△ABP中,|AP-BP|<AB,延長(zhǎng)AB交x軸于P′,當(dāng)P在P′點(diǎn)時(shí),PA-PB=AB,此時(shí)線段AP與線段BP之差達(dá)到最大,求出直線AB于x軸的交點(diǎn)坐標(biāo)即可.【題目詳解】把,代入反比例函數(shù),得:,,,在中,由三角形的三邊關(guān)系定理得:,延長(zhǎng)交軸于,當(dāng)在點(diǎn)時(shí),,即此時(shí)線段與線段之差達(dá)到最大,設(shè)直線的解析式是,把,的坐標(biāo)代入得:,解得:,直線的解析式是,當(dāng)時(shí),,即,故選D.【題目點(diǎn)撥】本題考查了三角形的三邊關(guān)系定理和用待定系數(shù)法求一次函數(shù)的解析式的應(yīng)用,解此題的關(guān)鍵是確定P點(diǎn)的位置,題目比較好,但有一定的難度.8、A【解題分析】

根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘;積的乘方法則:把每一個(gè)因式分別乘方,再把所得的冪相乘進(jìn)行計(jì)算即可.【題目詳解】解:A、x2÷x8=x-6,故該選項(xiàng)正確;

B、a?a2=a3,故該選項(xiàng)錯(cuò)誤;

C、(a2)3=a6,故該選項(xiàng)錯(cuò)誤;

D、(3a)3=27a3,故該選項(xiàng)錯(cuò)誤;

故選A.【題目點(diǎn)撥】此題主要考查了同底數(shù)冪的乘除法、冪的乘方和積的乘方,關(guān)鍵是掌握相關(guān)運(yùn)算法則.9、D【解題分析】

分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗(yàn)證成立的公式.【題目詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗(yàn)證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【題目點(diǎn)撥】考點(diǎn):等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).10、A【解題分析】

依據(jù)合并同類項(xiàng)法則、單項(xiàng)式乘單項(xiàng)式法則、積的乘方法則進(jìn)行判斷即可.【題目詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯(cuò)誤;C、(x3)2=x6,故C錯(cuò)誤;D、x3與x2不是同類項(xiàng),不能合并,故D錯(cuò)誤.故選A.【題目點(diǎn)撥】本題主要考查的是整式的運(yùn)算,熟練掌握相關(guān)法則是解題的關(guān)鍵.11、D【解題分析】

當(dāng)k+1=0時(shí),函數(shù)為一次函數(shù)必與x軸有一個(gè)交點(diǎn);當(dāng)k+1≠0時(shí),函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【題目詳解】當(dāng)k-1=0,即k=1時(shí),函數(shù)為y=-4x+4,與x軸只有一個(gè)交點(diǎn);當(dāng)k-1≠0,即k≠1時(shí),由函數(shù)與x軸只有一個(gè)交點(diǎn)可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【題目點(diǎn)撥】本題主要考查函數(shù)與x軸的交點(diǎn),掌握二次函數(shù)與x軸只有一個(gè)交點(diǎn)的條件是解題的關(guān)鍵,解決本題時(shí)注意考慮一次函數(shù)和二次函數(shù)兩種情況.12、D【解題分析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【題目詳解】解:①由拋物線的對(duì)稱軸可知:,∴,由拋物線與軸的交點(diǎn)可知:,∴,∴,故①正確;②拋物線與軸只有一個(gè)交點(diǎn),∴,∴,故②正確;③令,∴,∵,∴,∴,∴,∵,∴,故③正確;④由圖象可知:令,即的解為,∴的根為,故④正確;⑤∵,∴,故⑤正確;故選D.【題目點(diǎn)撥】考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是熟練運(yùn)用數(shù)形結(jié)合的思想.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、x≠-3【解題分析】求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,根據(jù)分式分母不為0的條件,要使xx+3在實(shí)數(shù)范圍內(nèi)有意義,必須14、46【解題分析】試卷分析:根據(jù)平行線的性質(zhì)和平角的定義即可得到結(jié)論.解:∵直線a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°?34°?100°=46°,故答案為46°.15、9.2×10﹣1.【解題分析】

根據(jù)科學(xué)記數(shù)法的正確表示為,由題意可得0.00092用科學(xué)記數(shù)法表示是9.2×10﹣1.【題目詳解】根據(jù)科學(xué)記數(shù)法的正確表示形式可得:0.00092用科學(xué)記數(shù)法表示是9.2×10﹣1.故答案為:9.2×10﹣1.【題目點(diǎn)撥】本題主要考查科學(xué)記數(shù)法的正確表現(xiàn)形式,解決本題的關(guān)鍵是要熟練掌握科學(xué)記數(shù)法的正確表現(xiàn)形式.16、.【解題分析】試題分析:∵關(guān)于x的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,∴.考點(diǎn):一元二次方程根的判別式.17、24+24【解題分析】

仔細(xì)觀察梯形從而發(fā)現(xiàn)其各邊與原正方形各邊之間的關(guān)系,則不難求得梯形的周長(zhǎng).【題目詳解】解:觀察圖形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周長(zhǎng)=HG+HM+MN+NG=2HM+4HG=24+24.故答案為24+24.【題目點(diǎn)撥】此題主要考查學(xué)生對(duì)等腰梯形的性質(zhì)及正方形的性質(zhì)的運(yùn)用及觀察分析圖形的能力.18、3(m-1)2【解題分析】試題分析:根據(jù)因式分解的方法,先提公因式,再根據(jù)完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案為:3(m-1)2點(diǎn)睛:因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式積的形式.根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=-x2-2x+1,C(1,0)(2)當(dāng)t=-2時(shí),線段PE的長(zhǎng)度有最大值1,此時(shí)P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2)【解題分析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點(diǎn),∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如圖1,設(shè)D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴當(dāng)t=-2時(shí),線段PE的長(zhǎng)度有最大值1,此時(shí)P(-2,6).(2)存在.如圖2,過N點(diǎn)作NH⊥x軸于點(diǎn)H.設(shè)OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M為OA中點(diǎn),∴MH=2-m.當(dāng)△MON為等腰三角形時(shí):①若MN=ON,則H為底邊OM的中點(diǎn),∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴點(diǎn)Q坐標(biāo)為(,2)或(,2).②若MN=OM=2,則在Rt△MNH中,根據(jù)勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化簡(jiǎn)得m2-6m+8=0,解得:m1=2,m2=1(不合題意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴點(diǎn)Q坐標(biāo)為(,2)或(,2).③若ON=OM=2,則在Rt△NOH中,根據(jù)勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化簡(jiǎn)得m2-1m+6=0,∵△=-8<0,∴此時(shí)不存在這樣的直線l,使得△MON為等腰三角形.綜上所述,存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2).(1)首先求得A、B點(diǎn)的坐標(biāo),然后利用待定系數(shù)法求拋物線的解析式,并求出拋物線與x軸另一交點(diǎn)C的坐標(biāo).(2)求出線段PE長(zhǎng)度的表達(dá)式,設(shè)D點(diǎn)橫坐標(biāo)為t,則可以將PE表示為關(guān)于t的二次函數(shù),利用二次函數(shù)求極值的方法求出PE長(zhǎng)度的最大值.(2)根據(jù)等腰三角形的性質(zhì)和勾股定理,將直線l的存在性問題轉(zhuǎn)化為一元二次方程問題,通過一元二次方程的判別式可知直線l是否存在,并求出相應(yīng)Q點(diǎn)的坐標(biāo).“△MON是等腰三角形”,其中包含三種情況:MN=ON,MN=OM,ON=OM,逐一討論求解.20、(1)證明見解析;(2)1.【解題分析】試題分析:(1)根據(jù)矩形的性質(zhì)得到AB=CD,∠B=∠D=90°,根據(jù)折疊的性質(zhì)得到∠E=∠B,AB=AE,根據(jù)全等三角形的判定定理即可得到結(jié)論;(2)根據(jù)全等三角形的性質(zhì)得到AF=CF,EF=DF,根據(jù)勾股定理得到DF=3,根據(jù)三角形的面積公式即可得到結(jié)論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點(diǎn)睛:本題考查了翻折變換﹣折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.21、(1)①;②;(2)【解題分析】

(1)①先根據(jù)等邊三角形的性質(zhì)的,進(jìn)而得出,最后用三角形的內(nèi)角和定理即可得出結(jié)論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構(gòu)造出直角三角形即可得出結(jié)論;(2)同②的方法即可得出結(jié)論.【題目詳解】(1)當(dāng)時(shí),①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,∵為線段上的點(diǎn),∴.∵,∴,.∵線段為線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)所得,∴.∴.∴,∴;②;如圖2,延長(zhǎng)到點(diǎn),使得,連接,作于點(diǎn).∵,點(diǎn)在上,∴.∵點(diǎn)在的延長(zhǎng)線上,,∴.∴.又∵,,∴.∴.∵于點(diǎn),∴,.∵在等邊三角形中,為中線,點(diǎn)在上,∴,即為底角為的等腰三角形.∴.∴.(2)如圖3,當(dāng)時(shí),在上取一點(diǎn)使,∵為等邊三角形,∴.∵為等邊三角形的中線,∵為線段上的點(diǎn),∴是的垂直平分線,∴.∵,∴,.∵線段為線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)所得,∴.∴.∴,又∵,,∴.∴.∵于點(diǎn),∴,.∵在等邊三角形中,為中線,點(diǎn)在上,∴,∴.∴.【題目點(diǎn)撥】此題是幾何變換綜合題,主要考查了等邊三角形的性質(zhì),三角形的內(nèi)角和定理,全等三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),銳角三角函數(shù),作出輔助線構(gòu)造出全等三角形是解本題的關(guān)鍵.22、(1)證明略(2)等腰三角形,理由略【解題分析】

證明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF為等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF為等腰三角形.23、解:作AB的垂直平分線,以點(diǎn)C為圓心,以AB的一半為半徑畫弧交AB的垂直平分線于點(diǎn)M即可.【解題分析】

易得M在AB的垂直平分線上,且到C的距離等于AB的一半.24、(1);(2)30°【解題分析】

(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例線段可求AB;

(2)連接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切線,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜邊上的中線,那么BE=CE,于是∠EBC=∠C,從而有∠EOB=∠EDC,又OE=OD,易證△DEO是等邊三角形,那么∠EDC=60°,從而可求∠C.【題目詳解】解:(1)∵AC的垂直平分線交BC于D點(diǎn),交AC于E點(diǎn),∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)連接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切線,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中點(diǎn),∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等邊三角形,∴∠EDC=60°,∴∠C=30°.【題目點(diǎn)撥】考查了切線的性質(zhì)、線段垂直平分線的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、等邊三角形的判定和性質(zhì).解題的關(guān)鍵是連接OE,構(gòu)造直角三角形.25、(1)y=14x2-2x+3【解題分析】試題分析:(1)首先利用根與系數(shù)的關(guān)系得出:x1+x2=8試題解析:解:(1)由題意知x1、x2是方程mx2﹣8mx+4m+2=0的兩根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)則4m﹣16m+4m+2=0,解得:m=,∴該拋物線解析式為:y=;.(2)可求得A(0,3)設(shè)直線AC的解析式為:y=kx+b,∵∴∴直線AC的解析式為:y=﹣x+3,要構(gòu)成△APC,顯然t≠6,分兩種情況討論:當(dāng)0<t<6時(shí),設(shè)直線l與AC交點(diǎn)為F,則:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此時(shí)最大值為:,②當(dāng)6≤t≤8時(shí),設(shè)直線l與AC交點(diǎn)為M,則:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,當(dāng)t=8時(shí),取最大值,最大值為:12,綜上可知,當(dāng)0<t≤8時(shí),△APC面積的最大值為12;(3)如圖,連接AB,則△AOB中,∠AOB=90°,AO=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論