2024屆上海市寶山區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁(yè)
2024屆上海市寶山區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁(yè)
2024屆上海市寶山區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁(yè)
2024屆上海市寶山區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁(yè)
2024屆上海市寶山區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆上海市寶山區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,是反比例函數(shù)圖象,陰影部分表示它與橫縱坐標(biāo)軸正半軸圍成的區(qū)域,在該區(qū)域內(nèi)不包括邊界的整數(shù)點(diǎn)個(gè)數(shù)是k,則拋物線向上平移k個(gè)單位后形成的圖象是A. B.C. D.2.下列函數(shù)中,當(dāng)x>0時(shí),y值隨x值增大而減小的是()A.y=x2 B.y=x﹣1 C. D.3.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣14.在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE,BE分別交于點(diǎn)G、H.∠CBE=∠BAD,有下列結(jié)論:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△BEC=S△ADF.其中正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5.若點(diǎn)A(1,a)和點(diǎn)B(4,b)在直線y=-2x+m上,則a與b的大小關(guān)系是()A.a(chǎn)>b B.a(chǎn)<bC.a(chǎn)=b D.與m的值有關(guān)6.在平面直角坐標(biāo)系中,有兩條拋物線關(guān)于x軸對(duì)稱(chēng),且他們的頂點(diǎn)相距10個(gè)單位長(zhǎng)度,若其中一條拋物線的函數(shù)表達(dá)式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或147.估算的值在(

)A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間8.如圖所示,在折紙活動(dòng)中,小明制作了一張△ABC紙片,點(diǎn)D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.70° B.110° C.130° D.140°9.在一張考卷上,小華寫(xiě)下如下結(jié)論,記正確的個(gè)數(shù)是m,錯(cuò)誤的個(gè)數(shù)是n,你認(rèn)為有公共頂點(diǎn)且相等的兩個(gè)角是對(duì)頂角若,則它們互余A.4 B. C. D.10.如圖,一束平行太陽(yáng)光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數(shù)是()A.26°. B.44°. C.46°. D.72°11.如圖,矩形是由三個(gè)全等矩形拼成的,與,,,,分別交于點(diǎn),設(shè),,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.1212.全球芯片制造已經(jīng)進(jìn)入10納米到7納米器件的量產(chǎn)時(shí)代.中國(guó)自主研發(fā)的第一臺(tái)7納米刻蝕機(jī),是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.數(shù)據(jù)0.000000007用科學(xué)計(jì)數(shù)法表示為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.下面是“作已知圓的內(nèi)接正方形”的尺規(guī)作圖過(guò)程.已知:⊙O.求作:⊙O的內(nèi)接正方形.作法:如圖,(1)作⊙O的直徑AB;(2)分別以點(diǎn)A,點(diǎn)B為圓心,大于12(3)作直線MN與⊙O交于C、D兩點(diǎn),順次連接A、C、B、D.即四邊形ACBD為所求作的圓內(nèi)接正方形.請(qǐng)回答:該尺規(guī)作圖的依據(jù)是_____.14.如圖,在菱形ABCD中,點(diǎn)E、F在對(duì)角線BD上,BE=DF=BD,若四邊形AECF為正方形,則tan∠ABE=_____.15.假期里小菲和小琳結(jié)伴去超市買(mǎi)水果,三次購(gòu)買(mǎi)的草莓價(jià)格和數(shù)量如下表:價(jià)格/(元/kg)

12

10

8

合計(jì)/kg

小菲購(gòu)買(mǎi)的數(shù)量/kg

2

2

2

6

小琳購(gòu)買(mǎi)的數(shù)量/kg

1

2

3

6

從平均價(jià)格看,誰(shuí)買(mǎi)得比較劃算?()A.一樣劃算B.小菲劃算C.小琳劃算D.無(wú)法比較16.在線段AB上,點(diǎn)C把線段AB分成兩條線段AC和BC,如果,那么點(diǎn)C叫做線段AB的黃金分割點(diǎn).若點(diǎn)P是線段MN的黃金分割點(diǎn),當(dāng)MN=1時(shí),PM的長(zhǎng)是_____.17.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個(gè)扇形的面積之和(即陰影部分)為cm2(結(jié)果保留π).18.如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點(diǎn)E,弦CD=,且BD=5,則DE=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖所示,在中,,(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使;(不寫(xiě)作法,保留作圖痕跡)(2)連接AP當(dāng)為多少度時(shí),AP平分.20.(6分)在某市組織的大型商業(yè)演出活動(dòng)中,對(duì)團(tuán)體購(gòu)買(mǎi)門(mén)票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購(gòu)買(mǎi)的門(mén)票張數(shù),現(xiàn)在只花費(fèi)了4800元.求每張門(mén)票原定的票價(jià);根據(jù)實(shí)際情況,活動(dòng)組織單位決定對(duì)于個(gè)人購(gòu)票也采取優(yōu)惠措施,原定票價(jià)經(jīng)過(guò)連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率.21.(6分)旋轉(zhuǎn)變換是解決數(shù)學(xué)問(wèn)題中一種重要的思想方法,通過(guò)旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問(wèn)題.已知,△ABC中,AB=AC,∠BAC=α,點(diǎn)D、E在邊BC上,且∠DAE=α.(1)如圖1,當(dāng)α=60°時(shí),將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°到△AFB的位置,連接DF,①求∠DAF的度數(shù);②求證:△ADE≌△ADF;(2)如圖2,當(dāng)α=90°時(shí),猜想BD、DE、CE的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖3,當(dāng)α=120°,BD=4,CE=5時(shí),請(qǐng)直接寫(xiě)出DE的長(zhǎng)為.22.(8分)華聯(lián)超市準(zhǔn)備代銷(xiāo)一款運(yùn)動(dòng)鞋,每雙的成本是170元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是200元時(shí),每天的銷(xiāo)售量是40雙,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5雙,設(shè)每雙降低x元(x為正整數(shù)),每天的銷(xiāo)售利潤(rùn)為y元.求y與x的函數(shù)關(guān)系式;每雙運(yùn)動(dòng)鞋的售價(jià)定為多少元時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少?23.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長(zhǎng)為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).24.(10分)地下停車(chē)場(chǎng)的設(shè)計(jì)大大緩解了住宅小區(qū)停車(chē)難的問(wèn)題,如圖是龍泉某小區(qū)的地下停車(chē)庫(kù)坡道入口的設(shè)計(jì)示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車(chē)庫(kù)坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車(chē)輛能否安全駛?cè)耄傉J(rèn)為CD的長(zhǎng)就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長(zhǎng)作為限制的高度.小剛和小亮誰(shuí)說(shuō)得對(duì)?請(qǐng)你判斷并計(jì)算出正確的限制高度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)25.(10分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),拋物線的對(duì)稱(chēng)軸直線x=交x軸于點(diǎn)D.(1)求拋物線的解析式;(2)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,交x軸于點(diǎn)G,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo);(3)在(2)的條件下,將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<90°),在旋轉(zhuǎn)過(guò)程中,設(shè)線段FG與拋物線交于點(diǎn)N,在線段GB上是否存在點(diǎn)P,使得以P、N、G為頂點(diǎn)的三角形與△ABC相似?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.26.(12分)在一節(jié)數(shù)學(xué)活動(dòng)課上,王老師將本班學(xué)生身高數(shù)據(jù)(精確到1厘米)出示給大家,要求同學(xué)們各自獨(dú)立繪制一幅頻數(shù)分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經(jīng)王老師批改,甲繪制的圖是正確的,乙在數(shù)據(jù)整理與繪圖過(guò)程中均有個(gè)別錯(cuò)誤.寫(xiě)出乙同學(xué)在數(shù)據(jù)整理或繪圖過(guò)程中的錯(cuò)誤(寫(xiě)出一個(gè)即可);甲同學(xué)在數(shù)據(jù)整理后若用扇形統(tǒng)計(jì)圖表示,則159.5﹣164.5這一部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為;該班學(xué)生的身高數(shù)據(jù)的中位數(shù)是;假設(shè)身高在169.5﹣174.5范圍的5名同學(xué)中,有2名女同學(xué),班主任老師想在這5名同學(xué)中選出2名同學(xué)作為本班的正、副旗手,那么恰好選中一名男同學(xué)和一名女同學(xué)當(dāng)正,副旗手的概率是多少?27.(12分)如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O.(1)畫(huà)出△AOB平移后的三角形,其平移后的方向?yàn)樯渚€AD的方向,平移的距離為AD的長(zhǎng).(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請(qǐng)證明你的結(jié)論.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解題分析】

依據(jù)反比例函數(shù)的圖象與性質(zhì),即可得到整數(shù)點(diǎn)個(gè)數(shù)是5個(gè),進(jìn)而得到拋物線向上平移5個(gè)單位后形成的圖象.【題目詳解】解:如圖,反比例函數(shù)圖象與坐標(biāo)軸圍成的區(qū)域內(nèi)不包括邊界的整數(shù)點(diǎn)個(gè)數(shù)是5個(gè),即,

拋物線向上平移5個(gè)單位后可得:,即,

形成的圖象是A選項(xiàng).

故選A.【題目點(diǎn)撥】本題考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)的圖象、二次函數(shù)的性質(zhì)與圖象,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的k的值,利用二次函數(shù)圖象的平移規(guī)律進(jìn)行解答.2、D【解題分析】A、、∵y=x2,∴對(duì)稱(chēng)軸x=0,當(dāng)圖象在對(duì)稱(chēng)軸右側(cè),y隨著x的增大而增大;而在對(duì)稱(chēng)軸左側(cè),y隨著x的增大而減小,故此選項(xiàng)錯(cuò)誤B、k>0,y隨x增大而增大,故此選項(xiàng)錯(cuò)誤C、B、k>0,y隨x增大而增大,故此選項(xiàng)錯(cuò)誤D、y=(x>0),反比例函數(shù),k>0,故在第一象限內(nèi)y隨x的增大而減小,故此選項(xiàng)正確3、A【解題分析】

根據(jù)絕對(duì)值和數(shù)的0次冪的概念作答即可.【題目詳解】原式=1+1=2故答案為:A.【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是絕對(duì)值和數(shù)的0次冪,解題關(guān)鍵是熟記數(shù)的0次冪為1.4、C【解題分析】

根據(jù)題意和圖形,可以判斷各小題中的結(jié)論是否成立,從而可以解答本題.【題目詳解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵點(diǎn)F是AB的中點(diǎn),∴FD=AB,F(xiàn)E=AB,∴FD=FE,①正確;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正確;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴,即BC?AD=AB?BE,∵∠AEB=90°,AE=BE,∴AB=BEBC?AD=BE?BE,∴BC?AD=AE2;③正確;設(shè)AE=a,則AB=a,∴CE=a﹣a,∴=,即,∵AF=AB,∴,∴S△BEC≠S△ADF,故④錯(cuò)誤,故選:C.【題目點(diǎn)撥】本題考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形斜邊上的中線,解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答.5、A【解題分析】【分析】根據(jù)一次函數(shù)性質(zhì):中,當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.由-2<0得,當(dāng)x12時(shí),y1>y2.【題目詳解】因?yàn)椋c(diǎn)A(1,a)和點(diǎn)B(4,b)在直線y=-2x+m上,-2<0,所以,y隨x的增大而減小.因?yàn)椋?<4,所以,a>b.故選A【題目點(diǎn)撥】本題考核知識(shí)點(diǎn):一次函數(shù)性質(zhì).解題關(guān)鍵點(diǎn):判斷一次函數(shù)中y與x的大小關(guān)系,關(guān)鍵看k的符號(hào).6、D【解題分析】

根據(jù)頂點(diǎn)公式求得已知拋物線的頂點(diǎn)坐標(biāo),然后根據(jù)軸對(duì)稱(chēng)的性質(zhì)求得另一條拋物線的頂點(diǎn),根據(jù)題意得出關(guān)于m的方程,解方程即可求得.【題目詳解】∵一條拋物線的函數(shù)表達(dá)式為y=x2+6x+m,∴這條拋物線的頂點(diǎn)為(-3,m-9),∴關(guān)于x軸對(duì)稱(chēng)的拋物線的頂點(diǎn)(-3,9-m),∵它們的頂點(diǎn)相距10個(gè)單位長(zhǎng)度.∴|m-9-(9-m)|=10,∴2m-18=±10,當(dāng)2m-18=10時(shí),m=1,當(dāng)2m-18=-10時(shí),m=4,∴m的值是4或1.故選D.【題目點(diǎn)撥】本題考查了二次函數(shù)圖象與幾何變換,解答本題的關(guān)鍵是掌握二次函數(shù)的頂點(diǎn)坐標(biāo)公式,坐標(biāo)和線段長(zhǎng)度之間的轉(zhuǎn)換,關(guān)于x軸對(duì)稱(chēng)的點(diǎn)和拋物線的關(guān)系.7、C【解題分析】

由可知56,即可解出.【題目詳解】∵∴56,故選C.【題目點(diǎn)撥】此題主要考查了無(wú)理數(shù)的估算,掌握無(wú)理數(shù)的估算是解題的關(guān)鍵.8、D【解題分析】∵四邊形ADA'E的內(nèi)角和為(4-2)?180°=360°,而由折疊可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.9、D【解題分析】

首先判斷出四個(gè)結(jié)論的錯(cuò)誤個(gè)數(shù)和正確個(gè)數(shù),進(jìn)而可得m、n的值,再計(jì)算出即可.【題目詳解】解:有公共頂點(diǎn)且相等的兩個(gè)角是對(duì)頂角,錯(cuò)誤;

,正確;

,錯(cuò)誤;

若,則它們互余,錯(cuò)誤;

則,,

,

故選D.【題目點(diǎn)撥】此題主要考查了二次根式的乘除、對(duì)頂角、科學(xué)記數(shù)法、余角和負(fù)整數(shù)指數(shù)冪,關(guān)鍵是正確確定m、n的值.10、A【解題分析】

先根據(jù)正五邊形的性質(zhì)求出∠EAB的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【題目詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽(yáng)光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【題目點(diǎn)撥】此題考查平行線的性質(zhì),多邊形內(nèi)角與外角,解題關(guān)鍵在于求出∠EAB.11、B【解題分析】

由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質(zhì),就可以求出,從而可以求出.【題目詳解】∵矩形AEHC是由三個(gè)全等矩形拼成的,

∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,

∴四邊形BEFD、四邊形DFGC是平行四邊形,

∴BE∥DF∥CG,

∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,

∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【題目點(diǎn)撥】本題考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),相似三角形的判定與性質(zhì),三角形的面積公式,得出S2=4S1,S3=9S1是解題關(guān)鍵.12、A【解題分析】

絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【題目詳解】數(shù)據(jù)0.000000007用科學(xué)記數(shù)法表示為7×10-1.故選A.【題目點(diǎn)撥】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、相等的圓心角所對(duì)的弦相等,直徑所對(duì)的圓周角是直角.【解題分析】

根據(jù)圓內(nèi)接正四邊形的定義即可得到答案.【題目詳解】到線段兩端距離相等的點(diǎn)在這條線段的中垂線上;兩點(diǎn)確定一條直線;互相垂直的直徑將圓四等分,從而得到答案.【題目點(diǎn)撥】本題主要考查了圓內(nèi)接正四邊形的定義以及基本性質(zhì),解本題的要點(diǎn)在于熟知相關(guān)基本知識(shí)點(diǎn).14、【解題分析】

利用正方形對(duì)角線相等且互相平分,得出EO=AO=BE,進(jìn)而得出答案.【題目詳解】解:∵四邊形AECF為正方形,

∴EF與AC相等且互相平分,

∴∠AOB=90°,AO=EO=FO,

∵BE=DF=BD,

∴BE=EF=FD,

∴EO=AO=BE,

∴tan∠ABE==.

故答案為:【題目點(diǎn)撥】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,正確得出EO=AO=BE是解題關(guān)鍵.15、C【解題分析】試題分析:根據(jù)題意分別求出兩人的平均價(jià)格,然后進(jìn)行比較.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,則小琳劃算.考點(diǎn):平均數(shù)的計(jì)算.16、【解題分析】

設(shè)PM=x,根據(jù)黃金分割的概念列出比例式,計(jì)算即可.【題目詳解】設(shè)PM=x,則PN=1-x,

由得,,

化簡(jiǎn)得:x2+x-1=0,

解得:x1=,x2=(負(fù)值舍去),

所以PM的長(zhǎng)為.【題目點(diǎn)撥】本題考查的是黃金分割的概念和性質(zhì),把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(xiàng),叫做把線段AB黃金分割.17、.【解題分析】

圖中陰影部分的面積就是兩個(gè)扇形的面積,圓A,B的半徑為2cm,則根據(jù)扇形面積公式可得陰影面積.【題目詳解】(cm2).故答案為.考點(diǎn):1、扇形的面積公式;2、兩圓相外切的性質(zhì).18、.【解題分析】

連接OD,OC,AD,由⊙O的直徑AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根據(jù)勾股定理可求出AD的長(zhǎng),在Rt△ADE中,利用∠DAC的正切值求解即可.【題目詳解】解:連接OD,OC,AD,∵半圓O的直徑AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴在Rt△ADE中,∵∠DAC=30°,∴DE=AD?tan30°故答案為【題目點(diǎn)撥】本題考查了圓周角定理、等邊三角形的判定與性質(zhì),勾股定理的應(yīng)用等知識(shí);綜合性比較強(qiáng).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)詳見(jiàn)解析;(2)30°.【解題分析】

(1)根據(jù)線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據(jù)等腰三角形的性質(zhì)可得,由角平分線的定義可得,根據(jù)直角三角形兩銳角互余的性質(zhì)即可得∠B的度數(shù),可得答案.【題目詳解】(1)如圖所示:分別以A、B為圓心,大于AB長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)E、F,作直線EF,交BC于點(diǎn)P,∵EF為AB的垂直平分線,∴PA=PB,∴點(diǎn)P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當(dāng)時(shí),AP平分.【題目點(diǎn)撥】本題考查尺規(guī)作圖,考查了垂直平分線的性質(zhì)、直角三角形兩銳角互余的性質(zhì)及等腰三角形的性質(zhì),線段垂直平分線上的點(diǎn)到線段兩端的距離相等;熟練掌握垂直平分線的性質(zhì)是解題關(guān)鍵.20、(1)1(2)10%.【解題分析】試題分析:(1)設(shè)每張門(mén)票的原定票價(jià)為x元,則現(xiàn)在每張門(mén)票的票價(jià)為(x-80)元,根據(jù)“按原定票價(jià)需花費(fèi)6000元購(gòu)買(mǎi)的門(mén)票張數(shù),現(xiàn)在只花費(fèi)了4800元”建立方程,解方程即可;(2)設(shè)平均每次降價(jià)的百分率為y,根據(jù)“原定票價(jià)經(jīng)過(guò)連續(xù)二次降價(jià)后降為324元”建立方程,解方程即可.試題解析:(1)設(shè)每張門(mén)票的原定票價(jià)為x元,則現(xiàn)在每張門(mén)票的票價(jià)為(x-80)元,根據(jù)題意得,解得x=1.經(jīng)檢驗(yàn),x=1是原方程的根.答:每張門(mén)票的原定票價(jià)為1元;(2)設(shè)平均每次降價(jià)的百分率為y,根據(jù)題意得1(1-y)2=324,解得:y1=0.1,y2=1.9(不合題意,舍去).答:平均每次降價(jià)10%.考點(diǎn):1.一元二次方程的應(yīng)用;2.分式方程的應(yīng)用.21、(1)①30°②見(jiàn)解析(2)BD2+CE2=DE2(3)【解題分析】

(1)①利用旋轉(zhuǎn)的性質(zhì)得出∠FAB=∠CAE,再用角的和即可得出結(jié)論;②利用SAS判斷出△ADE≌△ADF,即可得出結(jié)論;(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結(jié)論;(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,F(xiàn)M,最后用勾股定理即可得出結(jié)論.【題目詳解】解:(1)①由旋轉(zhuǎn)得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋轉(zhuǎn)知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如圖2,將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根據(jù)勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如圖3,將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,過(guò)點(diǎn)F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴,∵BD=4,∴DM=BD﹣BM=,根據(jù)勾股定理得,,∴DE=DF=,故答案為.【題目點(diǎn)撥】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,構(gòu)造全等三角形和直角三角形是解本題的關(guān)鍵.22、(1)y=﹣5x2+110x+1200;(2)售價(jià)定為189元,利潤(rùn)最大1805元【解題分析】

利潤(rùn)等于(售價(jià)﹣成本)×銷(xiāo)售量,根據(jù)題意列出表達(dá)式,借助二次函數(shù)的性質(zhì)求最大值即可;【題目詳解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵拋物線開(kāi)口向下,∴當(dāng)x=11時(shí),y有最大值1805,答:售價(jià)定為189元,利潤(rùn)最大1805元;【題目點(diǎn)撥】本題考查實(shí)際應(yīng)用中利潤(rùn)的求法,二次函數(shù)的應(yīng)用;能夠根據(jù)題意列出合理的表達(dá)式是解題的關(guān)鍵.23、(1)見(jiàn)解析;(2)75﹣a.【解題分析】

(1)連接CD,求出∠ADC=90°,根據(jù)切線長(zhǎng)定理求出DE=EC,即可求出答案;(2)連接CD、OD、OE,求出扇形DOC的面積,分別求出△ODE和△OCE的面積,即可求出答案【題目詳解】(1)證明:連接DC,∵BC是⊙O直徑,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC為直徑,∴AC切⊙O于C,∵過(guò)點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:連接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的長(zhǎng)度是a,∴扇形DOC的面積是×a×=a,∴DE、EC和弧DC圍成的部分的面積S=××10+×10﹣a=75﹣a.【題目點(diǎn)撥】本題考查了圓周角定理,切線的性質(zhì),切線長(zhǎng)定理,等腰三角形的性質(zhì)和判定,勾股定理,扇形的面積,三角形的面積等知識(shí)點(diǎn),能綜合運(yùn)用知識(shí)點(diǎn)進(jìn)行推理和計(jì)算是解此題的關(guān)鍵.24、小亮說(shuō)的對(duì),CE為2.6m.【解題分析】

先根據(jù)CE⊥AE,判斷出CE為高,再根據(jù)解直角三角形的知識(shí)解答.【題目詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說(shuō)的對(duì).答:小亮說(shuō)的對(duì),CE為2.6m.【題目點(diǎn)撥】本題主要考查了解直角三角形的應(yīng)用,主要是正弦、正切概念及運(yùn)算,解決本題的關(guān)鍵把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題.25、(1);(1),E(1,1);(3)存在,P點(diǎn)坐標(biāo)可以為(1+,5)或(3,5).【解題分析】

(1)設(shè)B(x1,5),由已知條件得,進(jìn)而得到B(2,5).又由對(duì)稱(chēng)軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點(diǎn)坐標(biāo).(3)設(shè)N點(diǎn)為(n,﹣n1+n+1),1<n<2.過(guò)N作NO⊥x軸于點(diǎn)P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點(diǎn)坐標(biāo).又由△ABC∽△GNP,且時(shí),得n=3或n=﹣2(舍去).求得P點(diǎn)坐標(biāo).【題目詳解】解:(1)設(shè)B(x1,5).由A(﹣1,5),對(duì)稱(chēng)軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點(diǎn)式得,S四邊形CDBF=﹣(m﹣1)1+.當(dāng)m=1時(shí),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論