2024屆山東省東平縣中考聯(lián)考數(shù)學試卷含解析_第1頁
2024屆山東省東平縣中考聯(lián)考數(shù)學試卷含解析_第2頁
2024屆山東省東平縣中考聯(lián)考數(shù)學試卷含解析_第3頁
2024屆山東省東平縣中考聯(lián)考數(shù)學試卷含解析_第4頁
2024屆山東省東平縣中考聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年山東省東平縣中考聯(lián)考數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設一個??奎c,為使所有的人步行到??奎c的路程之和最小,那么該??奎c的位置應設在()A.點A B.點B C.A,B之間 D.B,C之間2.如圖,將邊長為8㎝的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長是()A.3cm B.4cm C.5cm D.6cm3.如圖,在矩形ABCD中,P、R分別是BC和DC上的點,E、F分別是AP和RP的中點,當點P在BC上從點B向點C移動,而點R不動時,下列結論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點P的位置有關4.根據(jù)北京市統(tǒng)計局發(fā)布的統(tǒng)計數(shù)據(jù)顯示,北京市近五年國民生產總值數(shù)據(jù)如圖1所示,2017年國民生產總值中第一產業(yè)、第二產業(yè)、第三產業(yè)所占比例如圖2所示,根據(jù)以上信息,下列判斷錯誤的是()A.2013年至2017年北京市國民生產總值逐年增加B.2017年第二產業(yè)生產總值為5320億元C.2017年比2016年的國民生產總值增加了10%D.若從2018年開始,每一年的國民生產總值比前一年均增長10%,到2019年的國民生產總值將達到33880億元5.不等式組的整數(shù)解有()A.0個 B.5個 C.6個 D.無數(shù)個6.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.7.小明在九年級進行的六次數(shù)學測驗成績如下(單位:分):76、82、91、85、84、85,則這次數(shù)學測驗成績的眾數(shù)和中位數(shù)分別為()A.91,88 B.85,88 C.85,85 D.85,84.58.正三角形繞其中心旋轉一定角度后,與自身重合,旋轉角至少為()A.30° B.60° C.120° D.180°9.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.10.通過觀察下面每個圖形中5個實數(shù)的關系,得出第四個圖形中y的值是()A.8 B.﹣8 C.﹣12 D.1211.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.12.如圖,在平面直角坐標系中,線段AB的端點坐標為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點,則K的值不可能是()A.-5 B.-2 C.3 D.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.14.比較大?。篲____.(填“<“,“=“,“>“)15.分解因式:__________.16.已知關于x的方程x2﹣2x﹣m=0沒有實數(shù)根,那么m的取值范圍是_____.17.分解因式:2x3﹣4x2+2x=_____.18.一般地,當α、β為任意角時,sin(α+β)與sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα?cosβ+cosα?sinβ;sin(α﹣β)=sinα?cosβ﹣cosα?sinβ.例如sin90°=sin(60°+30°)=sin60°?cos30°+cos60°?sin30°==1.類似地,可以求得sin15°的值是_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)綜合與實踐﹣猜想、證明與拓廣問題情境:數(shù)學課上同學們探究正方形邊上的動點引發(fā)的有關問題,如圖1,正方形ABCD中,點E是BC邊上的一點,點D關于直線AE的對稱點為點F,直線DF交AB于點H,直線FB與直線AE交于點G,連接DG,CG.猜想證明(1)當圖1中的點E與點B重合時得到圖2,此時點G也與點B重合,點H與點A重合.同學們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關系和位置關系,其結論為:;(2)希望小組的同學發(fā)現(xiàn),圖1中的點E在邊BC上運動時,(1)中結論始終成立,為證明這兩個結論,同學們展開了討論:小敏:根據(jù)軸對稱的性質,很容易得到“GF與GD的數(shù)量關系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設圖中不斷變化的角∠BAF的度數(shù)為n,并設法用n表示圖中的一些角,可證明結論.請你參考同學們的思路,完成證明;(3)創(chuàng)新小組的同學在圖1中,發(fā)現(xiàn)線段CG∥DF,請你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請?zhí)骄俊螪FG的度數(shù),并直接寫出結果(用含α的式子表示).20.(6分)某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用、表示.該同學從5個項目中任選一個,恰好是田賽項目的概率為______;該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結果,并求恰好是一個田賽項目和一個徑賽項目的概率.21.(6分)如圖,在中,,平分,交于點,點在上,經(jīng)過兩點,交于點,交于點.求證:是的切線;若的半徑是,是弧的中點,求陰影部分的面積(結果保留和根號).22.(8分)已知:如圖,點A,F(xiàn),C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.23.(8分)(1)計算:;(2)解不等式組:24.(10分)已知:在⊙O中,弦AB=AC,AD是⊙O的直徑.求證:BD=CD.25.(10分)對幾何命題進行逆向思考是幾何研究中的重要策略,我們知道,等腰三角形兩腰上的高線相等,那么等腰三角形兩腰上的中線,兩底角的角平分線也分別相等嗎?它們的逆命題會正確嗎?(1)請判斷下列命題的真假,并在相應命題后面的括號內填上“真”或“假”.①等腰三角形兩腰上的中線相等;②等腰三角形兩底角的角平分線相等;③有兩條角平分線相等的三角形是等腰三角形;(2)請寫出“等腰三角形兩腰上的中線相等”的逆命題,如果逆命題為真,請畫出圖形,寫出已知、求證并進行證明,如果不是,請舉出反例.26.(12分)已知:如圖,∠ABC=∠DCB,BD、CA分別是∠ABC、∠DCB的平分線.求證:AB=DC.27.(12分)已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GE?GD.求證:∠ACF=∠ABD;連接EF,求證:EF?CG=EG?CB.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】

此題為數(shù)學知識的應用,由題意設一個??奎c,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【題目詳解】解:①以點A為停靠點,則所有人的路程的和=15×100+10×300=1(米),②以點B為??奎c,則所有人的路程的和=30×100+10×200=5000(米),③以點C為??奎c,則所有人的路程的和=30×300+15×200=12000(米),④當在AB之間??繒r,設??奎c到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當在BC之間??繒r,設??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該??奎c的位置應設在點A;故選A.【題目點撥】此題為數(shù)學知識的應用,考查知識點為兩點之間線段最短.2、A【解題分析】分析:根據(jù)折疊的性質,只要求出DN就可以求出NE,在直角△CEN中,若設CN=x,則DN=NE=8﹣x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長.詳解:設CN=xcm,則DN=(8﹣x)cm,由折疊的性質知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故選:A.點睛:此題主要考查了折疊問題,明確折疊問題其實質是軸對稱,對應線段相等,對應角相等,通常用勾股定理解決折疊問題.3、C【解題分析】試題分析:連接AR,根據(jù)勾股定理得出AR=的長不變,根據(jù)三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點:1、矩形性質,2、勾股定理,3、三角形的中位線4、C【解題分析】

由條形圖與扇形圖中的數(shù)據(jù)及增長率的定義逐一判斷即可得.【題目詳解】A、由條形圖知2013年至2017年北京市國民生產總值逐年增加,此選項正確;B、2017年第二產業(yè)生產總值為28000×19%=5320億元,此選項正確;C、2017年比2016年的國民生產總值增加了,此選項錯誤;D、若從2018年開始,每一年的國民生產總值比前一年均增長10%,到2019年的國民生產總值將達到2800×(1+10%)2=33880億元,此選項正確;故選C.【題目點撥】本題主要考查條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是根據(jù)條形統(tǒng)計圖與扇形統(tǒng)計圖得出具體數(shù)據(jù).5、B【解題分析】

先解每一個不等式,求出不等式組的解集,再求整數(shù)解即可.【題目詳解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式組的解集為﹣3<x≤2,∴整數(shù)解有:﹣2,﹣1,0,1,2共5個,故選B.【題目點撥】本題主要考查了不等式組的解法,并會根據(jù)未知數(shù)的范圍確定它所滿足的特殊條件的值.一般方法是先解不等式組,再根據(jù)解集求出特殊值.6、A【解題分析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.7、D【解題分析】試題分析:根據(jù)眾數(shù)的定義:出現(xiàn)次數(shù)最多的數(shù),中位數(shù)定義:把所有的數(shù)從小到大排列,位置處于中間的數(shù),即可得到答案.眾數(shù)出現(xiàn)次數(shù)最多的數(shù),85出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)是:85,把所有的數(shù)從小到大排列:76,82,84,85,85,91,位置處于中間的數(shù)是:84,85,因此中位數(shù)是:(85+84)÷2=84.5,故選D.考點:眾數(shù),中位數(shù)點評:此題主要考查了眾數(shù)與中位數(shù)的意義,關鍵是正確把握兩種數(shù)的定義,即可解決問題8、C【解題分析】

求出正三角形的中心角即可得解【題目詳解】正三角形繞其中心旋轉一定角度后,與自身重合,旋轉角至少為120°,故選C.【題目點撥】本題考查旋轉對稱圖形的概念:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角,掌握正多邊形的中心角的求解是解題的關鍵9、A【解題分析】

畫出從正面看到的圖形即可得到它的主視圖.【題目詳解】這個幾何體的主視圖為:故選:A.【題目點撥】本題考查了簡單組合體的三視圖:畫簡單組合體的三視圖要循序漸進,通過仔細觀察和想象,再畫它的三視圖.10、D【解題分析】

根據(jù)前三個圖形中數(shù)字之間的關系找出運算規(guī)律,再代入數(shù)據(jù)即可求出第四個圖形中的y值.【題目詳解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故選D.【題目點撥】本題考查了規(guī)律型中數(shù)字的變化類,根據(jù)圖形中數(shù)與數(shù)之間的關系找出運算規(guī)律是解題的關鍵.11、B【解題分析】

陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【題目詳解】解:由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【題目點撥】本題考查了旋轉的性質與扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質與扇形面積的計算.12、B【解題分析】

當直線y=kx-2與線段AB的交點為A點時,把A(-2,4)代入y=kx-2,求出k=-3,根據(jù)一次函數(shù)的有關性質得到當k≤-3時直線y=kx-2與線段AB有交點;當直線y=kx-2與線段AB的交點為B點時,把B(4,2)代入y=kx-2,求出k=1,根據(jù)一次函數(shù)的有關性質得到當k≥1時直線y=kx-2與線段AB有交點,從而能得到正確選項.【題目詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當直線y=kx-2與線段AB有交點,且過第二、四象限時,k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當直線y=kx-2與線段AB有交點,且過第一、三象限時,k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點,則k的值不可能是-2.故選B.【題目點撥】本題考查了一次函數(shù)y=kx+b(k≠0)的性質:當k>0時,圖象必過第一、三象限,k越大直線越靠近y軸;當k<0時,圖象必過第二、四象限,k越小直線越靠近y軸.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】

利用△ACD∽△CBD,對應線段成比例就可以求出.【題目詳解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.【題目點撥】本題考查了相似三角形的性質和判定,熟練掌握相似三角形的判定方法是關鍵.14、<【解題分析】

先比較它們的平方,進而可比較與的大小.【題目詳解】()2=80,()2=100,∵80<100,∴<.故答案為:<.【題目點撥】本題考查了實數(shù)的大小比較,帶二次根號的實數(shù),在比較它們的大小時,通常先比較它們的平方的大小.15、3(m-1)2【解題分析】試題分析:根據(jù)因式分解的方法,先提公因式,再根據(jù)完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案為:3(m-1)2點睛:因式分解是把一個多項式化為幾個因式積的形式.根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解).16、m<﹣1.【解題分析】

根據(jù)根的判別式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【題目詳解】∵關于x的方程x2﹣2x﹣m=0沒有實數(shù)根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案為:m<﹣1.【題目點撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.17、2x(x-1)2【解題分析】2x3﹣4x2+2x=18、.【解題分析】試題分析:sin15°=sin(60°﹣45°)=sin60°?cos45°﹣cos60°?sin45°==.故答案為.考點:特殊角的三角函數(shù)值;新定義.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解題分析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點D關于直線AE的對稱點為點F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【題目詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點D關于直線AE的對稱點為點F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點D關于直線AE的對稱點為點F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點D與點F關于AE對稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【題目點撥】本題考查了正方形、菱形、相似三角形的性質,解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質.20、(1);(2).【解題分析】

(1)由5個項目中田賽項目有2個,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與恰好是一個田賽項目和一個徑賽項目的情況,再利用概率公式即可求得答案.【題目詳解】(1)∵5個項目中田賽項目有2個,∴該同學從5個項目中任選一個,恰好是田賽項目的概率為:.故答案為;(2)畫樹狀圖得:∵共有20種等可能的結果,恰好是一個田賽項目和一個徑賽項目的有12種情況,∴恰好是一個田賽項目和一個徑賽項目的概率為:.【題目點撥】本題考查了用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)證明見解析;(2)【解題分析】

(1)連接OD,根據(jù)角平分線的定義和等腰三角形的性質可得∠ADO=∠CAD,即可證明OD//AC,進而可得∠ODB=90°,即可得答案;(2)根據(jù)圓周角定理可得弧弧弧,即可證明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的長,利用S陰影=S△BOD-S扇形DOE即可得答案.【題目詳解】(1)連接∵平分,∴,∵,∴,∴,∴OD//AC,∴,∴又是的半徑,∴是的切線(2)由題意得∵是弧的中點∴弧弧∵∴弧弧∴弧弧弧∴在中∵∴.【題目點撥】本題考查的是切線的判定、圓周角定理及扇形面積,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可;在同圓或等圓中,同弧或等弧所對的圓周角相等,都定義這條弧所對的圓心角的一半.熟練掌握相關定理及公式是解題關鍵.22、證明見解析【解題分析】

首先證明△ABC≌△DEF(ASA),進而得出BC=EF,BC∥EF,進而得出答案.【題目詳解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四邊形BCEF是平行四邊形.【題目點撥】本題考查了全等三角形的判定與性質與平行四邊形的判定,解題的關鍵是熟練的掌握全等三角形的判定與性質與平行四邊形的判定.23、(1);(2).【解題分析】

(1)根據(jù)冪的運算與實數(shù)的運算性質計算即可.(2)先整理為最簡形式,再解每一個不等式,最后求其解集.【題目詳解】(1)解:原式==(2)解不等式①,得.解不等式②,得.∴原不等式組的解集為【題目點撥】本題考查了實數(shù)的混合運算和解一元一次不等式組,熟練掌握和運用相關運算性質是解答關鍵.24、證明見解析【解題分析】

根據(jù)AB=AC,得到,于是得到∠ADB=∠ADC,根據(jù)AD是⊙O的直徑,得到∠B=∠C=90°,根據(jù)三角形的內角和定理得到∠BAD=∠DAC,于是得到結論.【題目詳解】證明:∵AB=AC,∴,∴∠ADB=∠ADC,∵AD是⊙O的直徑

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論