版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖北省武漢市外國語學(xué)校高三上數(shù)學(xué)期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.2.已知三棱柱的所有棱長均相等,側(cè)棱平面,過作平面與平行,設(shè)平面與平面的交線為,記直線與直線所成銳角分別為,則這三個角的大小關(guān)系為()A. B.C. D.3.若點(diǎn)(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或4.網(wǎng)絡(luò)是一種先進(jìn)的高頻傳輸技術(shù),我國的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機(jī),現(xiàn)調(diào)查得到該款手機(jī)上市時間和市場占有率(單位:%)的幾組相關(guān)對應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測該款手機(jī)市場占有率的變化趨勢,則最早何時該款手機(jī)市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月5.若實數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.26.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.7.一個正三角形的三個頂點(diǎn)都在雙曲線的右支上,且其中一個頂點(diǎn)在雙曲線的右頂點(diǎn),則實數(shù)的取值范圍是()A. B. C. D.8.集合,,則()A. B. C. D.9.設(shè)等比數(shù)列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要10.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.11.若復(fù)數(shù)z滿足,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中含有的項的系數(shù)是,則展開式中各項系數(shù)和為______.14.已知直線被圓截得的弦長為2,則的值為__15.已知實數(shù),且由的最大值是_________16.在棱長為的正方體中,是面對角線上兩個不同的動點(diǎn).以下四個命題:①存在兩點(diǎn),使;②存在兩點(diǎn),使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個面上的正投影的面積的和為定值.其中為真命題的是____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護(hù)意識,高二一班組織了環(huán)境保護(hù)興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個興趣小組中抽出人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機(jī)變量的分布列和期望18.(12分)已知;.(1)若為真命題,求實數(shù)的取值范圍;(2)若為真命題且為假命題,求實數(shù)的取值范圍.19.(12分)如圖,設(shè)橢圓:,長軸的右端點(diǎn)與拋物線:的焦點(diǎn)重合,且橢圓的離心率是.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過作直線交拋物線于,兩點(diǎn),過且與直線垂直的直線交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時直線的方程.20.(12分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?文科生理科生合計獲獎6不獲獎合計400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.22.(10分)已知函數(shù),其中為自然對數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上恰有3個零點(diǎn),且,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)底面為等邊三角形,取中點(diǎn),可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【詳解】設(shè)為中點(diǎn),是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點(diǎn)睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.2、B【解析】
利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點(diǎn),為的中點(diǎn),由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補(bǔ)角,分別為,設(shè)三棱柱的棱長為2,在中,,;在中,,;在中,,,.故選:B【點(diǎn)睛】本題主要考查了空間中兩直線所成角的計算,考查了學(xué)生的作圖,用圖能力,體現(xiàn)了學(xué)生直觀想象的核心素養(yǎng).3、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點(diǎn)睛】(1)本題主要考查點(diǎn)到直線的距離公式,意在考查學(xué)生對該知識的掌握水平和計算推理能力.(2)點(diǎn)到直線的距離.4、C【解析】
根據(jù)圖形,計算出,然后解不等式即可.【詳解】解:,點(diǎn)在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點(diǎn)睛】考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實際應(yīng)用,基礎(chǔ)題.5、C【解析】
作出可行域,直線目標(biāo)函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過點(diǎn)時,取得最大值1.故選:C.【點(diǎn)睛】本題考查簡單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個封閉圖形.6、A【解析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.7、D【解析】
因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點(diǎn)睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.8、A【解析】
解一元二次不等式化簡集合A,再根據(jù)對數(shù)的真數(shù)大于零化簡集合B,求交集運(yùn)算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點(diǎn)睛】本題主要考查了集合的交集運(yùn)算,涉及一元二次不等式解法及對數(shù)的概念,屬于中檔題.9、A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因為恒成立,故可以推出且,若成立,當(dāng)時,有,當(dāng)時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.10、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.11、A【解析】
化簡復(fù)數(shù),求得,得到復(fù)數(shù)在復(fù)平面對應(yīng)點(diǎn)的坐標(biāo),即可求解.【詳解】由題意,復(fù)數(shù)z滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點(diǎn)的坐標(biāo)為位于第一象限故選:A.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何表示方法,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,結(jié)合復(fù)數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.12、C【解析】
先根據(jù)奇偶性,求出的解析式,令,即可求出。【詳解】因為、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c(diǎn)睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數(shù)和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數(shù)是,解得,令得:展開式中各項系數(shù)和為,故答案為:1.【點(diǎn)睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.14、1【解析】
根據(jù)弦長為半徑的兩倍,得直線經(jīng)過圓心,將圓心坐標(biāo)代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,
因為直線被圓截得的弦長為2,
所以直線經(jīng)過圓心(1,1),
,解得.故答案為:1.【點(diǎn)睛】本題考查了直線與圓相交的性質(zhì),屬基礎(chǔ)題.15、【解析】
將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡得,又實數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當(dāng)過點(diǎn)或點(diǎn)時取最小值,可得所以的最大值是【點(diǎn)睛】本題考查了二元最值問題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達(dá)式進(jìn)行化簡,然后求出最值問題,本題有一定難度。16、①③④【解析】
對于①中,當(dāng)點(diǎn)與點(diǎn)重合,與點(diǎn)重合時,可判斷①正確;當(dāng)點(diǎn)點(diǎn)與點(diǎn)重合,與直線所成的角最小為,可判定②不正確;根據(jù)平面將四面體可分成兩個底面均為平面,高之和為的棱錐,可判定③正確;四面體在上下兩個底面和在四個側(cè)面上的投影,均為定值,可判定④正確.【詳解】對于①中,當(dāng)點(diǎn)與點(diǎn)重合,與點(diǎn)重合時,,所以①正確;對于②中,當(dāng)點(diǎn)點(diǎn)與點(diǎn)重合,與直線所成的角最小,此時兩異面直線的夾角為,所以②不正確;對于③中,設(shè)平面兩條對角線交點(diǎn)為,可得平面,平面將四面體可分成兩個底面均為平面,高之和為的棱錐,所以四面體的體積一定是定值,所以③正確;對于④中,四面體在上下兩個底面上的投影是對角線互相垂直且對角線長度均為1的四邊形,其面積為定義,四面體在四個側(cè)面上的投影,均為上底為,下底和高均為1的梯形,其面積為定值,故四面體在該正方體六個面上的正投影的面積的和為定值,所以④正確.故答案為:①③④.【點(diǎn)睛】本題主要考查了以空間幾何體的結(jié)構(gòu)特征為載體的謎題的真假判定及應(yīng)用,其中解答中涉及到棱柱的集合特征,異面直線的關(guān)系和椎體的體積,以及投影的綜合應(yīng)用,著重考查了推理與論證能力,屬于中檔試題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)分布列見解析,.【解析】
(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點(diǎn)睛】本題主要考查古典概型的計算,考查隨機(jī)變量的分布列和期望的計算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.18、(1)(2)或【解析】
(1)根據(jù)為真命題列出不等式,進(jìn)而求得實數(shù)的取值范圍;(2)應(yīng)用復(fù)合命題真假判定的口訣:真“非”假,假“非”真,一真“或”為真,兩真“且”才真.【詳解】(1),且,解得所以當(dāng)為真命題時,實數(shù)的取值范圍是.(2)由,可得,又∵當(dāng)時,,.∵當(dāng)為真命題,且為假命題時,∴與的真假性相同,當(dāng)假假時,有,解得;當(dāng)真真時,有,解得;故當(dāng)為真命題且為假命題時,可得或.【點(diǎn)睛】本題主要考查結(jié)合不等式的含有量詞的命題的恒成立問題,存在性問題,考查復(fù)合命題的真假判斷,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.19、(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】
(Ⅰ)由已知求出拋物線的焦點(diǎn)坐標(biāo)即得橢圓中的,再由離心率可求得,從而得值,得標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線方程為,設(shè),把直線方程代入拋物線方程,化為的一元二次方程,由韋達(dá)定理得,由弦長公式得,同理求得點(diǎn)的橫坐標(biāo),于是可得,將面積表示為參數(shù)的函數(shù),利用導(dǎo)數(shù)可求得最大值.【詳解】(Ⅰ)∵橢圓:,長軸的右端點(diǎn)與拋物線:的焦點(diǎn)重合,∴,又∵橢圓的離心率是,∴,,∴橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)過點(diǎn)的直線的方程設(shè)為,設(shè),,聯(lián)立得,∴,,∴.過且與直線垂直的直線設(shè)為,聯(lián)立得,∴,故,∴,面積.令,則,,令,則,即時,面積最小,即當(dāng)時,面積的最小值為9,此時直線的方程為.【點(diǎn)睛】本題考查橢圓方程的求解,拋物線中弦長的求解,涉及三角形面積范圍問題,利用導(dǎo)數(shù)求函數(shù)的最值問題,屬綜合困難題.20、(1),,.(2)填表見解析;在犯錯誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)(3)詳見解析【解析】
(1)根據(jù)頻率分步直方圖和構(gòu)成以2為公比的等比數(shù)列,即可得解;(2)由頻率分步直方圖算出相應(yīng)的頻數(shù)即可填寫列聯(lián)表,再用的計算公式運(yùn)算即可;(3)獲獎的概率為,隨機(jī)變量,再根據(jù)二項分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因為構(gòu)成以2為公比的等比數(shù)列,所以,解得,所以,.故,,.(2)獲獎的人數(shù)為人,因為參考的文科生與理科生人數(shù)之比為,所以400人中文科生的數(shù)量為,理科生的數(shù)量為.由表可知,獲獎的文科生有6人,所以獲獎的理科生有人,不獲獎的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計獲獎61420不獲獎74306380合計80320400所以在犯錯誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān).(3)由(2)可知,獲獎的概率為,的可能取值為0,1,2,,,,分布列如下:012數(shù)學(xué)期望為.【點(diǎn)睛】本題考查頻率分布直方圖、統(tǒng)計案例和離散型隨機(jī)變量的分布列與期望,考查學(xué)生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度建筑水電預(yù)埋施工及設(shè)備供應(yīng)合同樣本3篇
- 二零二五年度房地產(chǎn)分銷與房地產(chǎn)法律咨詢服務(wù)協(xié)議3篇
- 二零二五年度國有企業(yè)股權(quán)擔(dān)保合同3篇
- 二零二五年度企業(yè)員工借調(diào)及健康管理服務(wù)合同3篇
- 高速公路改造項目可行性分析報告
- 二零二五年度幼兒保育服務(wù)人員招聘聘用合同3篇
- 二零二五年度醫(yī)療機(jī)構(gòu)醫(yī)務(wù)人員待遇集體合同3篇
- 智研咨詢發(fā)布:中國汽車4S店行業(yè)競爭格局及發(fā)展前景研究報告
- 陜西省某縣秸稈發(fā)電項目可行性研究報告
- 四川新農(nóng)村建設(shè)農(nóng)房設(shè)計方案圖集川東南部分
- 2024年江蘇省普通高中學(xué)業(yè)水平測試小高考生物、地理、歷史、政治試卷及答案(綜合版)
- 浙江省杭州市西湖區(qū)2023-2024學(xué)年六年級上學(xué)期期末語文試卷
- 重慶市永川區(qū)城鄉(xiāng)總體規(guī)劃
- 擋風(fēng)玻璃自動涂膠方案
- 復(fù)旦大學(xué)新聞傳播學(xué)考博真題
- IEC60335-1(中文)
- 對于申請增加辦公用房請示
- 民用無人駕駛航空器系統(tǒng)空中交通管理辦法
- 姓名代碼查詢
- 四層電梯控制系統(tǒng)設(shè)計-(共38頁)
評論
0/150
提交評論