2024屆新疆昌吉市一中高三數(shù)學第一學期期末統(tǒng)考試題含解析_第1頁
2024屆新疆昌吉市一中高三數(shù)學第一學期期末統(tǒng)考試題含解析_第2頁
2024屆新疆昌吉市一中高三數(shù)學第一學期期末統(tǒng)考試題含解析_第3頁
2024屆新疆昌吉市一中高三數(shù)學第一學期期末統(tǒng)考試題含解析_第4頁
2024屆新疆昌吉市一中高三數(shù)學第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆新疆昌吉市一中高三數(shù)學第一學期期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.2.若函數(shù)的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.3.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.264.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側(cè)面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.5.設集合,則()A. B.C. D.6.已知復數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣27.設,集合,則()A. B. C. D.8.已知函數(shù),若對任意,都有成立,則實數(shù)的取值范圍是()A. B. C. D.9.設等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.1210.已知向量,,若,則()A. B. C.-8 D.811.為實現(xiàn)國民經(jīng)濟新“三步走”的發(fā)展戰(zhàn)略目標,國家加大了扶貧攻堅的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當年貧困戶總數(shù)的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占2019年貧困戶總數(shù)的比)及該項目的脫貧率見下表:實施項目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務業(yè)參加用戶比脫貧率那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍12.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行右邊的程序框圖,輸出的的值為.14.在中,、的坐標分別為,,且滿足,為坐標原點,若點的坐標為,則的取值范圍為__________.15.在平面直角坐標系中,雙曲線的一條準線與兩條漸近線所圍成的三角形的面積為______.16.已知實數(shù),且由的最大值是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標準方程;(2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.18.(12分)已知數(shù)列和,前項和為,且,是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.19.(12分)已知函數(shù).(1)若在處導數(shù)相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數(shù)的取值范圍.20.(12分)在數(shù)列中,,(1)求數(shù)列的通項公式;(2)若存在,使得成立,求實數(shù)的最小值21.(12分)已知,,設函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.22.(10分)在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)若點的極坐標為,,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用三角形與相似得,結(jié)合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程?!驹斀狻吭O,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力。2、D【解析】

由題可知,可轉(zhuǎn)化為曲線與有兩個公共點,可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數(shù)研究函數(shù)的零點,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算的能力,屬于較難題.3、D【解析】

利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計算公式可得所求的種數(shù).【詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【點睛】本題考查組合的應用,此類問題注意實際問題的合理轉(zhuǎn)化,本題屬于容易題.4、D【解析】

建立平面直角坐標系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【詳解】將拋物線放入坐標系,如圖所示,∵,,,∴,設拋物線,代入點,可得∴焦點為,即焦點為中點,設焦點為,,,∴.故選:D【點睛】本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點間的距離等基礎知識;考查運算求解能力,空間想象能力,推理論證能力,應用意識.5、B【解析】

直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎題.6、D【解析】

化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎題.7、B【解析】

先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.8、D【解析】

先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點作函數(shù)的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數(shù)在不等式恒成立中的應用,考查了學生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.9、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.10、B【解析】

先求出向量,的坐標,然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎題.11、B【解析】

設貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進而可求解.【詳解】設貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的倍.故選:B【點睛】本題考查了概率與統(tǒng)計,考查了學生的數(shù)據(jù)處理能力,屬于基礎題.12、C【解析】

設出兩人到達小王的時間,根據(jù)題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結(jié)束所以答案應填:考點:1、程序框圖;2、定積分.14、【解析】

由正弦定理可得點在曲線上,設,則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設,則,,又,,因為,則,即的取值范圍為.故答案為:.【點睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標運算,考查學生計算能力,有一定的綜合性,但難度不大.15、【解析】

求出雙曲線的漸近線方程,求出準線方程,求出三角形的頂點的坐標,然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準線方程為,雙曲線的漸近線方程為:,可得準線方程與雙曲線的兩條漸近線所圍成的三角形的頂點的坐標,,,,則三角形的面積為.故答案為:【點睛】本題考查雙曲線方程的應用,雙曲線的簡單性質(zhì)的應用,考查計算能力,屬于中檔題.16、【解析】

將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡得,又實數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當過點或點時取最小值,可得所以的最大值是【點睛】本題考查了二元最值問題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達式進行化簡,然后求出最值問題,本題有一定難度。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】

(1)根據(jù)已知可得,結(jié)合離心率和關系,即可求出橢圓的標準方程;(2)斜率不為零,設的方程為,與橢圓方程聯(lián)立,消去,得到縱坐標關系,求出方程,令求出坐標,要證、、三點共線,只需證,將分子用縱坐標表示,即可證明結(jié)論.【詳解】(1)由于,將代入橢圓方程,得,由題意知,即.又,所以,.所以橢圓的方程為.(2)解法一:依題意直線斜率不為0,設的方程為,聯(lián)立方程,消去得,由題意,得恒成立,設,,所以,直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子,.所以,,三點共線.解法二:當直線的斜率不存在時,由題意,得的方程為,代入橢圓的方程,得,,直線的方程為.則,,,所以,即,,三點共線.當直線的斜率存在時,設的方程為,,,聯(lián)立方程消去,得.由題意,得恒成立,故,.直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子所以.所以,,三點共線.【點睛】本題考查橢圓的標準方程、直線與橢圓的位置關系,要熟練掌握根與系數(shù)關系,設而不求方法解決相交弦問題,考查計算求解能力,屬于中檔題.18、(1),;(2).【解析】

(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達式,即可得出數(shù)列的通項公式,并設數(shù)列的公比為,根據(jù)題意列出和的方程組,解出這兩個量,然后利用等比數(shù)列的通項公式可求出;(2)求出數(shù)列的前項和,然后利用分組求和法可求出.【詳解】(1)當時,,當時,.也適合上式,所以,.設數(shù)列的公比為,則,由,兩式相除得,,解得,,;(2)設數(shù)列的前項和為,則,.【點睛】本題考查利用求,同時也考查了等比數(shù)列通項的計算,以及分組求和法的應用,考查計算能力,屬于中等題.19、(I)見解析(II)【解析】

(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導數(shù)相等,得到,得,由韋達定理得,由基本不等式得,得,由題意得,令,則,令,,利用導數(shù)性質(zhì)能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當自變量充分大時,,所以存在,,使得,,取,則與至少有兩個交點,矛盾.由對任意,只有一個解,得為上的遞增函數(shù),得,令,則,得【點睛】本題考查函數(shù)的單調(diào)性,導數(shù)的運算及其應用,同時考查邏輯思維能力和綜合應用能力屬難題.20、(1);(2)【解析】

(1)由得,兩式相減可得是從第二項開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數(shù)列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數(shù)的最小值.【點睛】本題主要考查地推數(shù)列的應用,屬于中檔題.21、(1);(2)證明見解析【解析】

(1)利用零點分段法,求出各段的取值范圍然后取并集可得結(jié)果.(2)利用絕對值三角不等式可得,然后使用柯西不等式可得結(jié)果.【詳解】(1)由,所以由當時,則所以當時,則當時,則綜上所述:(2)由當且僅當時取等號所以由,所以所以令根據(jù)柯西不等式,則當且僅當,即取等號由故,又則【點睛】本題考查使用零點分段法求解絕對值不等式以及柯西不等式的應用,屬基礎題.22、(1)曲線的直角坐標方程為即,直線的普通方程為;(2).【解析】

(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標方程兩邊同乘以利用即可得曲線的直角坐標方程;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論