版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
天津市和平區(qū)名校2024屆下學(xué)期開學(xué)考試數(shù)學(xué)試題試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.歷史上有不少數(shù)學(xué)家都對圓周率作過研究,第一個用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分?jǐn)?shù)、無窮級數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.2.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.53.已知為虛數(shù)單位,若復(fù)數(shù),則A. B.C. D.4.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.65.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.6.已知集合,集合,則()A. B. C. D.7.若集合,則()A. B.C. D.8.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.9.已知集合,,則()A. B.C. D.10.已知集合,則的值域為()A. B. C. D.11.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或112.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的最大值為3,的圖象與y軸的交點坐標(biāo)為,其相鄰兩條對稱軸間的距離為2,則14.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.15.直線是曲線的一條切線為自然對數(shù)的底數(shù)),則實數(shù)__________.16.已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,且滿足,證明:.18.(12分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.19.(12分)已知函數(shù),曲線在點處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點,且.20.(12分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.(12分)為了響應(yīng)國家號召,促進(jìn)垃圾分類,某校組織了高三年級學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答隨機(jī)抽出男女各20名同學(xué)的問卷進(jìn)行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān)?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學(xué)生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學(xué)期望.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)已知拋物線的準(zhǔn)線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時,滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.2、B【解題分析】
利用雙曲線的定義和條件中的比例關(guān)系可求.【題目詳解】.選B.【題目點撥】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.3、B【解題分析】
因為,所以,故選B.4、C【解題分析】
根據(jù)題意,將a、b代入,利用基本不等式求出最小值即可.【題目詳解】∵a>0,b>0,a+b=1,∴,當(dāng)且僅當(dāng)時取“=”號.
答案:C【題目點撥】本題考查基本不等式的應(yīng)用,“1”的應(yīng)用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是最后一定要驗證等號能否成立,屬于基礎(chǔ)題.5、B【解題分析】
首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【題目詳解】解:因為,所以因為所以,即,,時故選:【題目點撥】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.6、C【解題分析】
求出集合的等價條件,利用交集的定義進(jìn)行求解即可.【題目詳解】解:∵,,∴,故選:C.【題目點撥】本題主要考查了對數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運算,屬于基礎(chǔ)題.7、A【解題分析】
先確定集合中的元素,然后由交集定義求解.【題目詳解】,.故選:A.【題目點撥】本題考查求集合的交集運算,掌握交集定義是解題關(guān)鍵.8、B【解題分析】
雙曲線的漸近線方程為,由題可知.設(shè)點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.9、C【解題分析】
求出集合,計算出和,即可得出結(jié)論.【題目詳解】,,,.故選:C.【題目點撥】本題考查交集和并集的計算,考查計算能力,屬于基礎(chǔ)題.10、A【解題分析】
先求出集合,化簡=,令,得由二次函數(shù)的性質(zhì)即可得值域.【題目詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A【題目點撥】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題11、D【解題分析】
求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點坐標(biāo),代入直線方程,求得的值.【題目詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【題目點撥】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.12、C【解題分析】
由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【題目詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【題目點撥】本題考查了定積分的實際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數(shù)的圖像與性質(zhì).14、【解題分析】
以為坐標(biāo)原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,從而可得、,,,然后利用向量數(shù)量積的坐標(biāo)運算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【題目詳解】以為坐標(biāo)原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,則、,由,且,所以,所以,即又平分,所以,則,設(shè),則,,所以,所以,,所以的最大值是.故答案為:【題目點撥】本題考查了向量數(shù)量積的坐標(biāo)運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.15、【解題分析】
根據(jù)切線的斜率為,利用導(dǎo)數(shù)列方程,由此求得切點的坐標(biāo),進(jìn)而求得切線方程,通過對比系數(shù)求得的值.【題目詳解】,則,所以切點為,故切線為,即,故.故答案為:【題目點撥】本小題主要考查利用導(dǎo)數(shù)求解曲線的切線方程有關(guān)問題,屬于基礎(chǔ)題.16、【解題分析】
由題得直線的方程為,代入橢圓方程得:,設(shè)點,則有,由,且解出,進(jìn)而求解出離心率.【題目詳解】由題知,直線的方程為,代入消得:,設(shè)點,則有,,而,又,解得:,所以離心率.故答案為:【題目點撥】本題主要考查了直線與橢圓的位置關(guān)系,三角形面積計算與離心率的求解,考查了學(xué)生的運算求解能力三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、證明見解析【解題分析】
將化簡可得,由柯西不等式可得證明.【題目詳解】解:因為,,所以,又,所以,當(dāng)且僅當(dāng)時取等號.【題目點撥】本題主要考查柯西不等式的應(yīng)用,相對不難,注意已知條件的化簡及柯西不等式的靈活運用.18、(1)證明見解析(2)【解題分析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【題目詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個法向量,∴,∴平面與平面所成角的正弦值為.【題目點撥】本題第一問考查線線垂直,先證線面垂直時解題關(guān)鍵,第二問考查二面角,建立空間直角坐標(biāo)系是解題關(guān)鍵,屬于中檔題.19、(1)(2)證明見解析【解題分析】
(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.【題目詳解】(1)函數(shù)的定義域為,,則(1),(1),故曲線在點,(1)處的切線方程為,又曲線在點,(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時,,單調(diào)遞增,當(dāng),時,,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時,,,單調(diào)遞增,當(dāng),時,,,單調(diào)遞減,故函數(shù)存在唯一的極大值點,且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,.【題目點撥】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題.20、(1)證明見解析;(2)【解題分析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列,并求得其通項公式.然后利用累加法求得數(shù)列的通項公式.(2)利用錯位相減求和法求得數(shù)列的前項和【題目詳解】(1)已知,則,且,則為以3為首相,3為公比的等比數(shù)列,所以,.(2)由(1)得:,,①,②①-②可得,則即.【題目點撥】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查累加法求數(shù)列的通項公式,考查錯位相減求和法,屬于中檔題.21、(Ⅰ)填表見解析,有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān);(Ⅱ)分布列見解析,【解題分析】
(Ⅰ)根據(jù)莖葉圖填寫列聯(lián)表,計算得到答案.(Ⅱ),計算,,,得到分布列,再計算數(shù)學(xué)期望得到答案.【題目詳解】(Ⅰ)根據(jù)莖葉圖可得:男女總計合格101626不合格10414總計202040,故有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果””有關(guān).(Ⅱ)從莖葉圖可知,成績在60分以下(不含60分)的男女學(xué)生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,,,,012.【題目點撥】本題考查了獨立性檢驗,分布列,數(shù)學(xué)期望,意在考查學(xué)生的綜合應(yīng)用能力.22、(1);(2)或.【解題分析】
(1)由拋物線的準(zhǔn)線方程求出的值,確定左焦點坐標(biāo),再由點F到直線l:的距離為4,求出即可;(2)設(shè)直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)匯編職員管理篇
- 單位管理制度呈現(xiàn)大全人員管理篇
- 藝術(shù)節(jié)主持詞
- 70MW光伏發(fā)電項目工程(EPC)總承包投標(biāo)文件 承包人實施計劃
- 《市場營銷學(xué)導(dǎo)言》課件
- 《天貓規(guī)則學(xué)習(xí)》課件
- 空調(diào)維修公司保安工作總結(jié)
- 財務(wù)工作品質(zhì)提升總結(jié)
- 兒童新媒體編輯工作總結(jié)
- 2003年廣東高考語文真題及答案
- 2025年安徽交控集團(tuán)招聘筆試參考題庫含答案解析
- 促進(jìn)臨床合理用藥持續(xù)改進(jìn)措施
- 精神科護(hù)理崗位競聘
- 廣西北海市2023-2024學(xué)年八年級(上)期末數(shù)學(xué)試卷
- 非急救轉(zhuǎn)運合同范例
- 車輛使用安全培訓(xùn)
- 《中國傳統(tǒng)文化》課件模板(六套)
- 民航客艙服務(wù)管理Ⅱ?qū)W習(xí)通超星期末考試答案章節(jié)答案2024年
- 兒科主任年終總結(jié)
- 期末 (試題) -2024-2025學(xué)年人教PEP版英語四年級上冊
- 第三單元 (單元測試)-2024-2025學(xué)年-四年級上冊語文統(tǒng)編版
評論
0/150
提交評論