考研數(shù)學(xué)三類行列式計(jì)算分析_第1頁
考研數(shù)學(xué)三類行列式計(jì)算分析_第2頁
考研數(shù)學(xué)三類行列式計(jì)算分析_第3頁
考研數(shù)學(xué)三類行列式計(jì)算分析_第4頁
考研數(shù)學(xué)三類行列式計(jì)算分析_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

行列式是線性代數(shù)的重要考察點(diǎn),出題比較靈活,考生需熟練掌握。店鋪為大家精心準(zhǔn)備了考研數(shù)學(xué)三類行列式計(jì)算指南,歡迎大家考研數(shù)學(xué)三類行列式計(jì)算解析對于數(shù)值型行列式來說,我們先看低階行列式的計(jì)算,對于二階或者三階行列式其是有自己的計(jì)算公式的,我們可以直接計(jì)算。三階以上的行列式,一般可以運(yùn)用行列式按行或者按列展開定理展開為低階行列式再進(jìn)行計(jì)算,對于較復(fù)雜的三階行列式也可以考慮先進(jìn)行展開。在運(yùn)用展開定理時,一般需要先利用行列式的性質(zhì)將行列式化為某行或者某列只有一個非零元的形式,再進(jìn)行展開。特殊低階行列式可以直接利用行列式的性質(zhì)進(jìn)行求解。對于高階行列式的計(jì)算,我們的基本思路有兩個:一是利用行列式的性質(zhì)進(jìn)行三角化,也就是將行列式化為上三角或者下三角行列式來計(jì)算;二是運(yùn)用按行或者按列直接展開,其中運(yùn)用展開定理的行列式一般要求有某行或者某列僅有一個或者兩個非零元,如果展開之后仍然沒有降低計(jì)算難度,則可以觀察是否能得到遞推公式,再進(jìn)行計(jì)算。其中在高階行列式中我是用加邊法把其最終化為上(下)三角,或者就直接按行或者列直接展開了,展開后有的時候就直接是上或者下三角形行列式了,但有時其還不是上下三階,可能就要用到遞推的類型來處理此類題目了。總之,我們對于高階行列式要求不是很高,只要掌握幾種常見的情形的計(jì)算方法就可以了。有的時候,對于那些比較特殊的形式,比如范德蒙行列式的類型,我們就直接把它湊成此類行列式,然后利用范德蒙行列式的計(jì)算公式就可以了,但是,我們一定要把范德蒙行列式的形式,一階其計(jì)算方法給它掌握住,我們在上課時也給同學(xué)們講解了其記憶的方面,希望同學(xué)們課下多多做些練習(xí)題進(jìn)行鞏固。當(dāng)然對于行列式我們有時可能還會用到克萊默法則和拉普拉斯展開來計(jì)算,只是這些都是些特殊的行列式的計(jì)算,其有一定的局限性,比如1995年數(shù)三就考到了一題用克萊默法則來處理的填空題。對于抽象型行列式來說,其計(jì)算方法就有可能是與后面的知識相結(jié)合來處理的。關(guān)于抽象型行列式的計(jì)算:(1)利用行列式算,這里主要是運(yùn)用單行(列)可拆性來計(jì)算的,這種大多是把行列式用向量來表示的,然后利用單行或者列可拆性,把它拆開成多個行列式,然后逐個計(jì)算,這時一部分行列式可能就會出現(xiàn)兩行或者列元素相同陣的性質(zhì)及運(yùn)算來計(jì)算,這類題,主要是用兩個矩陣相乘的行列式等于兩個矩陣分別取行列式相乘,這里當(dāng)然要求必須是方陣才行。這類題目的解題思路就是利用已知條件中的式子化和差為乘積的形式,進(jìn)而兩邊再取行列式,便可得到所求行列式。之前很多年考研中都出現(xiàn)過此類填空或者選擇題。因此,此類題型同學(xué)們務(wù)必要掌握住其解題思路和方法,多做練習(xí)加以鞏固。(3)利用單位矩陣的來求行列式,這類題目難度比前面題型要大,對矩陣的相關(guān)性質(zhì)和結(jié)論要求比較高。早在1995年數(shù)一的考研試卷中出現(xiàn)過一題6分的解答題,這題就是要利用A乘以A的轉(zhuǎn)置等于單位矩陣E這個條件來代換的,把要求的式子中的單位矩陣換成這個已知(4)利用矩陣特征值來求行列式,這類題在考研中出現(xiàn)過很多次,利用矩陣的特征值與其行列式的關(guān)系來求行列式,即行列式等于矩陣特征值之積,這種方法要求同學(xué)們一定要掌握住,課下要多做些練習(xí)考研高數(shù)中值定理證明的幾種方法中值定理包括費(fèi)馬引理、羅爾定理、拉格朗日定理、格西中值定理、泰勒中值定理,這四個定理之間的聯(lián)和區(qū)別要弄清楚,羅爾定理是拉格朗日中值定理的特殊情況。除泰勒定理外的三個定理都要求已知函數(shù)在某個閉區(qū)間上連續(xù),對應(yīng)開區(qū)間內(nèi)可導(dǎo)??挛髦兄刀ɡ砩婕暗絻蓚€函數(shù),在分母上的那個函數(shù)的一階導(dǎo)在定義域上要求不為零,柯西中值定理還有一個重要應(yīng)用——洛必達(dá)法則,在求極限時會經(jīng)常用到。而且同學(xué)們需要掌握的不單單是這五個中值定理,而且關(guān)于他格朗日定理、格西定理的證明過程,這個過程在教科書上都有證明的過程,同學(xué)們需要自己把這個都完全能夠掌握,不僅僅是因?yàn)樵?9年的真題考查過這個的證明,而是這幾個的證明思想是之后類似題目證明反復(fù)使用的。而閉區(qū)間上的連續(xù)定理主要是指的最值定理、介值定一般來講閉區(qū)間上連續(xù)的定理是直接用的,也就是用來直接證明一些類似與存在一點(diǎn)在某個區(qū)間內(nèi)使得某個函數(shù)是等于零的。而中值定理的應(yīng)用一般是需要通過構(gòu)造函數(shù)的,一般來講都是三步走,第一步去構(gòu)造函數(shù),合理的去構(gòu)造函數(shù)是能夠做出這個證明題目最最關(guān)鍵的一步,而構(gòu)造函數(shù)的方法一般是通過對要求的那個等式積分得到,同時也要注意兩遍同時乘以一個函數(shù),比如同時乘以ex,因?yàn)檫@個函數(shù)積分是不變的,所以會有這個。構(gòu)造完成后就是第二步去檢驗(yàn)條件,看是用那個定理,一般來講,如果是求一階的導(dǎo)數(shù)等于0優(yōu)先想到的就是羅爾定理,如果是讓你求高階的一個式子等于零或者等于某個式子,那么優(yōu)先想到的就是泰勒公式了,因?yàn)樯厦娴奈鍌€中值定理中,只有泰勒公式是會涉及到高階的,其他的幾個都是一階,如果知道的是一階,最多也是求解二階的。第三步就是求導(dǎo)驗(yàn)證自己求出來的是考研數(shù)學(xué)歷年考的最多的7個知識點(diǎn)1、兩個重要極限,未定式的極限、等價無窮小代換這些小的知識點(diǎn)在歷年的考察中都比較高。而透過我們分析,假如考極限的話,主要考的是洛必達(dá)法則加等價無窮小代換,特別針對數(shù)三的同學(xué),這兒可能出大題。2、處理連續(xù)性,可導(dǎo)性和可微性的關(guān)系要求掌握各種函數(shù)的求導(dǎo)方法。比如隱函數(shù)求導(dǎo),參數(shù)方程求導(dǎo)等等這一類的,還有注意一元函數(shù)的應(yīng)用問題,這也是歷年考試的一個重點(diǎn)。數(shù)三的同學(xué)這兒結(jié)合經(jīng)濟(jì)類的一些試題進(jìn)行考察。3、微分方程:一是一元線性微分方程,第二是二階常系數(shù)齊次/非齊次線性微分方程對第一部分,考生需要掌握九種小類型,針對每一種小類型有不同的解題方式,針對每個不同的方程,套用不同的公式就行了。對于二階常系數(shù)線性微分方程大家一定要理解解的結(jié)構(gòu)。另一塊對于非齊次的方程來說,考生要注意它和特征方程的聯(lián)系,有齊次為方程可以求它的通解,當(dāng)然給出的通解大家也要寫出它的特征方程,這個變化是咱們這幾年的一個趨勢。這一類問題就是逆問題。對于二階常系數(shù)非齊次的線性方程大家要分類掌握。當(dāng)然,這一塊對于數(shù)三的同學(xué)來說,還有一個差分方程的問題,差分方程不作為咱們的一個重點(diǎn),而且提醒大家一下,學(xué)習(xí)的時候要注意,差分方程的解題方式和微方程是相似的,學(xué)習(xí)的時候要注意這一點(diǎn)。4、級數(shù)問題,主要針對數(shù)一和數(shù)三這部分的重點(diǎn)是:一、常數(shù)項(xiàng)級數(shù)的性質(zhì),包括斂散性;二、牽扯到冪級數(shù),大家要熟練掌握冪級數(shù)的收斂區(qū)間的計(jì)算,收斂半徑與和函數(shù),冪級數(shù)展開的問題,要掌握一個熟練的方法來進(jìn)行計(jì)算。對于冪級數(shù)求和函數(shù)它可能直接給咱們一個冪級數(shù)求它的和函數(shù)或者給出一個常數(shù)項(xiàng)級數(shù)讓咱們求它的和,要轉(zhuǎn)化成適當(dāng)?shù)膬缂墧?shù)來進(jìn)行求和。5、一維隨機(jī)變量函數(shù)的分布這個要重點(diǎn)掌握連續(xù)性變量的這一塊。這里面有個難點(diǎn),一維隨機(jī)變量函數(shù)這是一個難點(diǎn),求一元隨機(jī)變量函數(shù)的分布有兩種方式,一個是分布函數(shù)法,這是最基本要掌握的。另外是公式法,公式法相對比較便捷,但是應(yīng)用范圍有一定的局限性。6、隨機(jī)變量的數(shù)字特征要記住一維隨機(jī)變量的數(shù)字特征都要記熟,數(shù)字特征很少單獨(dú)性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論