版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省高中高三下學(xué)期1月月考數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三棱錐中,為的中點(diǎn),平面,,,則有下列四個(gè)結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時(shí),與平面所成的角的范圍為;④當(dāng)時(shí),為平面內(nèi)一動(dòng)點(diǎn),若OM∥平面,則在內(nèi)軌跡的長(zhǎng)度為1.其中正確的個(gè)數(shù)是().A.1 B.1 C.3 D.42.在正方體中,點(diǎn),,分別為棱,,的中點(diǎn),給出下列命題:①;②;③平面;④和成角為.正確命題的個(gè)數(shù)是()A.0 B.1 C.2 D.33.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函數(shù),若關(guān)于的方程有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.5.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.546.已知、是雙曲線的左右焦點(diǎn),過點(diǎn)與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn),若點(diǎn)在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.7.函數(shù)(且)的圖象可能為()A. B. C. D.8.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國(guó)古代四大發(fā)明,此說法最早由英國(guó)漢學(xué)家艾約瑟提出并為后來許多中國(guó)的歷史學(xué)家所繼承,普遍認(rèn)為這四種發(fā)明對(duì)中國(guó)古代的政治,經(jīng)濟(jì),文化的發(fā)展產(chǎn)生了巨大的推動(dòng)作用.某小學(xué)三年級(jí)共有學(xué)生500名,隨機(jī)抽查100名學(xué)生并提問中國(guó)古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計(jì)該校三級(jí)的500名學(xué)生中,對(duì)四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人9.已知集合,,則()A. B.C. D.10.等差數(shù)列中,已知,且,則數(shù)列的前項(xiàng)和中最小的是()A.或 B. C. D.11.為了加強(qiáng)“精準(zhǔn)扶貧”,實(shí)現(xiàn)偉大復(fù)興的“中國(guó)夢(mèng)”,某大學(xué)派遣甲、乙、丙、丁、戊五位同學(xué)參加三個(gè)貧困縣的調(diào)研工作,每個(gè)縣至少去1人,且甲、乙兩人約定去同一個(gè)貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.6412.設(shè)點(diǎn)是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn),若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個(gè)命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號(hào)是________.14.設(shè)平面向量與的夾角為,且,,則的取值范圍為______.15.已知集合,,則__________.16.已知正數(shù)a,b滿足a+b=1,則的最小值等于__________,此時(shí)a=____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù).(1)若不等式有解,求實(shí)數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實(shí)數(shù),,滿足,證明:.19.(12分)已知函數(shù)(1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.20.(12分)設(shè)函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當(dāng)x>1時(shí),g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.21.(12分)已知三棱錐中側(cè)面與底面都是邊長(zhǎng)為2的等邊三角形,且面面,分別為線段的中點(diǎn).為線段上的點(diǎn),且.(1)證明:為線段的中點(diǎn);(2)求二面角的余弦值.22.(10分)已知函數(shù),其中,.(1)當(dāng)時(shí),求的值;(2)當(dāng)?shù)淖钚≌芷跒闀r(shí),求在上的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】
由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯(cuò)誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【題目詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯(cuò)誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號(hào).可得的最大值為,即的范圍為,③正確;取中點(diǎn),的中點(diǎn),連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【題目點(diǎn)撥】此題考查立體幾何中與點(diǎn)、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.2、C【解題分析】
建立空間直角坐標(biāo)系,利用向量的方法對(duì)四個(gè)命題逐一分析,由此得出正確命題的個(gè)數(shù).【題目詳解】設(shè)正方體邊長(zhǎng)為,建立空間直角坐標(biāo)系如下圖所示,,.①,,所以,故①正確.②,,不存在實(shí)數(shù)使,故不成立,故②錯(cuò)誤.③,,,故平面不成立,故③錯(cuò)誤.④,,設(shè)和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個(gè).故選:C【題目點(diǎn)撥】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運(yùn)算求解能力,屬于中檔題.3、C【解題分析】所對(duì)應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡(jiǎn)單題.4、C【解題分析】
求導(dǎo),先求出在單增,在單減,且知設(shè),則方程有4個(gè)不同的實(shí)數(shù)根等價(jià)于方程在上有兩個(gè)不同的實(shí)數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【題目詳解】依題意,,令,解得,,故當(dāng)時(shí),,當(dāng),,且,故方程在上有兩個(gè)不同的實(shí)數(shù)根,故,解得.故選:C.【題目點(diǎn)撥】本題考查確定函數(shù)零點(diǎn)或方程根個(gè)數(shù).其方法:(1)構(gòu)造法:構(gòu)造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點(diǎn)個(gè)數(shù)問題求解,利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點(diǎn)值的符號(hào)(或變化趨勢(shì))等,畫出的圖象草圖,數(shù)形結(jié)合求解;(2)定理法:先用零點(diǎn)存在性定理判斷函數(shù)在某區(qū)間上有零點(diǎn),然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點(diǎn)值符號(hào),進(jìn)而判斷函數(shù)在該區(qū)間上零點(diǎn)的個(gè)數(shù).5、C【解題分析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【題目詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【題目點(diǎn)撥】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.6、A【解題分析】雙曲線﹣=1的漸近線方程為y=x,不妨設(shè)過點(diǎn)F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點(diǎn)M(,﹣),∵點(diǎn)M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.7、D【解題分析】因?yàn)?,故函?shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點(diǎn):1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.8、D【解題分析】
先求得名學(xué)生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學(xué)生中對(duì)四大發(fā)明只能說出一種或一種也說不出的人數(shù).【題目詳解】在這100名學(xué)生中,只能說出一種或一種也說不出的有人,設(shè)對(duì)四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【題目點(diǎn)撥】本小題主要考查利用樣本估計(jì)總體,屬于基礎(chǔ)題.9、C【解題分析】
求出集合,計(jì)算出和,即可得出結(jié)論.【題目詳解】,,,.故選:C.【題目點(diǎn)撥】本題考查交集和并集的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.10、C【解題分析】
設(shè)公差為,則由題意可得,解得,可得.令
,可得
當(dāng)時(shí),,當(dāng)時(shí),,由此可得數(shù)列前項(xiàng)和中最小的.【題目詳解】解:等差數(shù)列中,已知,且,設(shè)公差為,
則,解得
,.
令
,可得,故當(dāng)時(shí),,當(dāng)時(shí),,
故數(shù)列前項(xiàng)和中最小的是.故選:C.【題目點(diǎn)撥】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項(xiàng)公式的應(yīng)用,屬于中檔題.11、B【解題分析】
根據(jù)題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【題目詳解】當(dāng)按照進(jìn)行分配時(shí),則有種不同的方案;當(dāng)按照進(jìn)行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【題目點(diǎn)撥】本題考查排列組合、數(shù)學(xué)文化,還考查數(shù)學(xué)建模能力以及分類討論思想,屬于中檔題.12、B【解題分析】∵∵∴∵,∴∴故選B點(diǎn)睛:本題主要考查利用橢圓的簡(jiǎn)單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、長(zhǎng)軸、短軸等橢圓的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.二、填空題:本題共4小題,每小題5分,共20分。13、②【解題分析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯(cuò)誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯(cuò)誤;因?yàn)椤叭魓y=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯(cuò)誤.14、【解題分析】
根據(jù)已知條件計(jì)算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進(jìn)而可得出的取值范圍.【題目詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【題目點(diǎn)撥】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計(jì)算能力,屬于中等題.15、【解題分析】
直接根據(jù)集合和集合求交集即可.【題目詳解】解:,,所以.故答案為:【題目點(diǎn)撥】本題考查集合的交集運(yùn)算,是基礎(chǔ)題.16、3【解題分析】
根據(jù)題意,分析可得,由基本不等式的性質(zhì)可得最小值,進(jìn)而分析基本不等式成立的條件可得a的值,即可得答案.【題目詳解】根據(jù)題意,正數(shù)a、b滿足,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故的最小值為3,此時(shí).故答案為:3;.【題目點(diǎn)撥】本題考查基本不等式及其應(yīng)用,考查轉(zhuǎn)化與化歸能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解題分析】試題分析:先將問題“存在實(shí)數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實(shí)數(shù)使成立,等價(jià)于的最大值大于,因?yàn)?,由柯西不等式:,所以,?dāng)且僅當(dāng)時(shí)取“”,故常數(shù)的取值范圍是.考點(diǎn):柯西不等式即運(yùn)用和轉(zhuǎn)化與化歸的數(shù)學(xué)思想的運(yùn)用.18、(1)(2)見解析【解題分析】
(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【題目詳解】解:(1)設(shè),∴在上單調(diào)遞減,在上單調(diào)遞增.故.∵有解,∴.即的取值范圍為.(2),當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴,即.∵.當(dāng)且僅當(dāng),,時(shí)等號(hào)成立.∴,即成立.【題目點(diǎn)撥】此題考查不等式的證明,注意定值乘變化的靈活應(yīng)用,屬于較易題目.19、(1);(2).【解題分析】
(1)求導(dǎo)得到,討論和兩種情況,計(jì)算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計(jì)算得到答案.(2)計(jì)算得到,討論,兩種情況,分別計(jì)算單調(diào)性得到函數(shù)最值,得到答案.【題目詳解】(1),①當(dāng)時(shí)恒成立,所以單調(diào)遞增,因?yàn)?,所以有唯一零點(diǎn),即符合題意;②當(dāng)時(shí),令,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)。(i)當(dāng)即,所以符合題意,(ii)當(dāng)即時(shí),因?yàn)?,故存?所以不符題意(iii)當(dāng)時(shí),因?yàn)?,設(shè),所以,單調(diào)遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當(dāng)時(shí),恒成立,所以單調(diào)遞增,所以,即符合題意;②當(dāng)時(shí),恒成立,所以單調(diào)遞增,又因?yàn)?,所以存在,使得,且?dāng)時(shí),。即在上單調(diào)遞減,所以,不符題意。綜上,的取值范圍為.【題目點(diǎn)撥】本題考查了函數(shù)的零點(diǎn)問題,恒成立問題,意在考查學(xué)生的分類討論能力和綜合應(yīng)用能力.20、(Ⅰ)當(dāng)時(shí),<0,單調(diào)遞減;當(dāng)時(shí),>0,單調(diào)遞增;(Ⅱ)詳見解析;(Ⅲ).【解題分析】試題分析:本題考查導(dǎo)數(shù)的計(jì)算、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計(jì)算能力.第(Ⅰ)問,對(duì)求導(dǎo),再對(duì)a進(jìn)行討論,判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論,第(Ⅲ)問,構(gòu)造函數(shù)=(),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:(Ⅰ)<0,在內(nèi)單調(diào)遞減.由=0有.當(dāng)時(shí),<0,單調(diào)遞減;當(dāng)時(shí),>0,單調(diào)遞增.(Ⅱ)令=,則=.當(dāng)時(shí),>0,所以,從而=>0.(Ⅲ)由(Ⅱ),當(dāng)時(shí),>0.當(dāng),時(shí),=.故當(dāng)>在區(qū)間內(nèi)恒成立時(shí),必有.當(dāng)時(shí),>1.由(Ⅰ)有,而,所以此時(shí)>在區(qū)間內(nèi)不恒成立.當(dāng)時(shí),令=().當(dāng)時(shí),=.因此,在區(qū)間單調(diào)遞增.又因?yàn)?0,所以當(dāng)時(shí),=>0,即>恒成立.綜上,.【考點(diǎn)】導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題【名師點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計(jì)算能力.求函數(shù)的單調(diào)性,基本方法是求,解方程,再通過的正負(fù)確定的單調(diào)性;要證明不等式,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度國(guó)際文化交流項(xiàng)目志愿者聘用合同
- 2025版民宿民宿餐飲服務(wù)合同示范4篇
- 2025年度房地產(chǎn)公司股權(quán)轉(zhuǎn)讓與市場(chǎng)推廣合同
- 2025年度個(gè)人車位租賃服務(wù)合同范本2篇
- 2025年度沐足行業(yè)員工勞動(dòng)合同模板(含保密協(xié)議)4篇
- 林綿綿《韓娛離婚協(xié)議》2025年度網(wǎng)絡(luò)劇改編權(quán)轉(zhuǎn)讓合同8篇
- 二零二五年度個(gè)人現(xiàn)金借款合同標(biāo)準(zhǔn)版2篇
- 二零二五年度農(nóng)產(chǎn)品品牌授權(quán)使用合同8篇
- 二零二五年度農(nóng)家樂鄉(xiāng)村旅游扶貧項(xiàng)目合作合同4篇
- 二零二五年度文化旅游產(chǎn)業(yè)投資借款合同大全4篇
- 2022年中國(guó)電信維護(hù)崗位認(rèn)證動(dòng)力專業(yè)考試題庫(kù)大全-上(單選、多選題)
- 紀(jì)委辦案安全培訓(xùn)課件
- 超市連鎖行業(yè)招商策劃
- 醫(yī)藥高等數(shù)學(xué)智慧樹知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學(xué)
- 城市道路智慧路燈項(xiàng)目 投標(biāo)方案(技術(shù)標(biāo))
- 初中英語(yǔ)-Unit2 My dream job(writing)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
- 【公司利潤(rùn)質(zhì)量研究國(guó)內(nèi)外文獻(xiàn)綜述3400字】
- 工行全國(guó)地區(qū)碼
- 新疆2022年中考物理試卷及答案
- 地暖工程監(jiān)理實(shí)施細(xì)則
- 頂部板式吊耳計(jì)算HGT-20574-2018
評(píng)論
0/150
提交評(píng)論