版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
二次函數(shù)在閉區(qū)間上的最值
高中數(shù)學(xué)香城中學(xué)數(shù)學(xué)組例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;10xy–23軸定區(qū)間定時(shí)的值域與最值例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;10xy234–1(2)若x∈[2,4],求函數(shù)f(x)的最值;例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;y10x234–1
(3)若x∈[],求函數(shù)f(x)的最值;例1、已知函數(shù)f(x)=x2–2x–3(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;
10xy234–1
(4)若x∈[],求函數(shù)f(x)的最值;
10xy234–1(5)若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.tt+2例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;(4)若x∈[],求函數(shù)f(x)的最值;
10xy234–1tt+2例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;(4)若x∈[],求函數(shù)f(x)的最值;(5)若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.
10xy234–1tt+2例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;(4)若x∈[],求函數(shù)f(x)的最值;(5)若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.
10xy234–1tt+2例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;(4)若x∈[],求函數(shù)f(x)的最值;(5)若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.
10xy234–1tt+2例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;(4)若x∈[],求函數(shù)f(x)的最值;(5)若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.
評(píng)注:例1屬于“軸定區(qū)間變”的問題,看作動(dòng)區(qū)間沿x軸移動(dòng)的過程中,函數(shù)最值的變化,即動(dòng)區(qū)間在定軸的左、右兩側(cè)及包含定軸的變化,要注意開口方向及端點(diǎn)情況。10xy234–1tt+2例2,①求函數(shù)的最小值對稱軸:由圖像知120當(dāng)a<0時(shí):當(dāng)0≤a≤2時(shí):
當(dāng)a>2時(shí):X=aX=aX=a軸動(dòng)區(qū)間定時(shí)的值域與最值
簡析:120當(dāng)a≤1時(shí):當(dāng)a>1時(shí):簡析:解:②求函數(shù)y=x2-2ax+1,x∈[0,2]的最大值.評(píng)注:例2屬于“軸變區(qū)間定”的問題,看作對稱軸沿x軸移動(dòng)的過程中,函數(shù)最值的變化,即對稱軸在定區(qū)間的左、右兩側(cè)及對稱軸在定區(qū)間上變化情況,要注意開口方向及端點(diǎn)情況。例3,21-2-1-321-2-1-3
a>0a<0軸定,區(qū)間定,開口變例3、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.10xy2–1例3、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.10xy2–1例3、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.10xy2–1例3、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.10xy2–110xy2–110xy2–1例3、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.10xy2–110xy2–1例3、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年寧夏農(nóng)墾金融控股有限公司招聘筆試參考題庫含答案解析
- 2025年度住宅小區(qū)地下車庫車位產(chǎn)權(quán)轉(zhuǎn)讓及車位租賃合同3篇
- 2025版二手房買賣家居風(fēng)水咨詢合同3篇
- 2025年度個(gè)人汽車租賃押金退還服務(wù)協(xié)議2篇
- 2025年度文化藝術(shù)品展覽與拍賣合作協(xié)議3篇
- 2025年全球及中國達(dá)格列凈片行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025-2030全球工業(yè)系統(tǒng)智能化解決方案行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球吸附無細(xì)胞百白破聯(lián)合疫苗行業(yè)調(diào)研及趨勢分析報(bào)告
- 2024年科普知識(shí)競賽試題庫及答案(共80題)
- 所有股東股份轉(zhuǎn)讓協(xié)議
- GB/T 45120-2024道路車輛48 V供電電壓電氣要求及試驗(yàn)
- 2025年上海市嘉定區(qū)中考英語一模試卷
- 2025年中核財(cái)務(wù)有限責(zé)任公司招聘筆試參考題庫含答案解析
- 春節(jié)文化常識(shí)單選題100道及答案
- 華中師大一附中2024-2025學(xué)年度上學(xué)期高三年級(jí)第二次考試數(shù)學(xué)試題(含解析)
- 12123交管學(xué)法減分考試題及答案
- 2025年寒假實(shí)踐特色作業(yè)設(shè)計(jì)模板
- 《數(shù)據(jù)采集技術(shù)》課件-XPath 解析庫
- 財(cái)務(wù)報(bào)銷流程培訓(xùn)課程
- 成人腦室外引流護(hù)理-中華護(hù)理學(xué)會(huì)團(tuán)體 標(biāo)準(zhǔn)
- 24年追覓在線測評(píng)28題及答案
評(píng)論
0/150
提交評(píng)論