版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年河北省故城縣數學九年級第一學期期末經典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在△ABC中,tanC=,cosA=,則∠B=()A.60° B.90° C.105° D.135°2.如圖,是岑溪市幾個地方的大致位置的示意圖,如果用表示孔廟的位置,用表示東山公園的位置,那么體育場的位置可表示為()A. B. C. D.3.在△ABC中,若tanA=1,sinB=,你認為最確切的判斷是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是等邊三角形4.已知關于x的不等式2x-m>-3的解集如圖所示,則m的取值為()A.2 B.1 C.0 D.-15.如圖,點P在△ABC的邊AC上,要判斷△ABP∽△ACB,添加一個條件,不正確的是()A.∠ABP=∠C B.∠APB=∠ABCC. D.6.如圖,在中,點D,E分別為AB,AC邊上的點,且,CD、BE相較于點O,連接AO并延長交DE于點G,交BC邊于點F,則下列結論中一定正確的是A. B. C. D.7.關于拋物線的說法中,正確的是()A.開口向下 B.與軸的交點在軸的下方C.與軸沒有交點 D.隨的增大而減小8.如圖是二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數);⑤當﹣1<x<3時,y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤9.如圖,在等腰Rt△ABC中,∠BAC=90°,BC=2,點P是△ABC內部的一個動點,且滿足∠PBC=∠PCA,則線段AP長的最小值為()A.0.5 B.﹣1 C.2﹣ D.10.下列二次根式中,與是同類二次根式的是()A. B. C. D.11.關于x的一元二次方程x2﹣mx﹣3=0的一個解為x=﹣1,則m的值為()A.﹣2 B.2 C.5 D.﹣412.已知一個菱形的周長是,兩條對角線長的比是,則這個菱形的面積是()A. B. C. D.二、填空題(每題4分,共24分)13.已知cos(a-15°)=,那么a=____________14.若方程x2﹣2x﹣4=0的兩個實數根為a,b,則-a2-b2的值為_________。15.如圖,在中,,,,、分別是邊、上的兩個動點,且,是的中點,連接,,則的最小值為__________.16.已知一元二次方程的一個根為1,則__________.17.如圖,在正方形ABCD中,對角線AC、BD交于點O,E是BC的中點,DE交AC于點F,則tan∠BDE=______.18.計算:|﹣3|+(2019﹣π)0﹣+()-2=_______.三、解答題(共78分)19.(8分)如圖,△ABC中,AB=8,AC=6.(1)請用尺規(guī)作圖的方法在AB上找點D,使得△ACD∽△ABC(保留作圖痕跡,不寫作法)(2)在(1)的條件下,求AD的長20.(8分)如圖,的內接四邊形兩組對邊的延長線分別相交于點、.(1)若時,求證:;(2)若時,求的度數.21.(8分)已知:在⊙O中,弦AC⊥弦BD,垂足為H,連接BC,過點D作DE⊥BC于點E,DE交AC于點F(1)如圖1,求證:BD平分∠ADF;(2)如圖2,連接OC,若AC=BC,求證:OC平分∠ACB;(3)如圖3,在(2)的條件下,連接AB,過點D作DN∥AC交⊙O于點N,若AB=3,DN=1.求sin∠ADB的值.22.(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC,AC分別交于D,E兩點,過點D作DH⊥AC于點H.(1)求證:BD=CD;(2)連結OD若四邊形AODE為菱形,BC=8,求DH的長.23.(10分)如圖,在長方形中,,,動點、分別從點、同時出發(fā),點以2厘米/秒的速度向終點移動,點以1厘米/秒的速度向移動,當有一點到達終點時,另一點也停止運動.設運動的時間為,問:(1)當秒時,四邊形面積是多少?(2)當為何值時,點和點距離是?(3)當_________時,以點、、為頂點的三角形是等腰三角形.(直接寫出答案)24.(10分)在平面直角坐標系xOy中,已知拋物線G:y=ax2﹣2ax+4(a≠0).(1)當a=1時,①拋物線G的對稱軸為x=;②若在拋物線G上有兩點(2,y1),(m,y2),且y2>y1,則m的取值范圍是;(2)拋物線G的對稱軸與x軸交于點M,點M與點A關于y軸對稱,將點M向右平移3個單位得到點B,若拋物線G與線段AB恰有一個公共點,結合圖象,求a的取值范圍.25.(12分)已知二次函數的圖象和軸交于點、,與軸交于點,點是直線上方的拋物線上的動點.(1)求直線的解析式.(2)當是拋物線頂點時,求面積.(3)在點運動過程中,求面積的最大值.26.在平面直角坐標系中,直線y=x+3與x軸交于點A,與y軸交于點B,拋物線y=a+bx+c(a<0)經過點A,B,(1)求a、b滿足的關系式及c的值,(2)當x<0時,若y=a+bx+c(a<0)的函數值隨x的增大而增大,求a的取值范圍,(3)如圖,當a=?1時,在拋物線上是否存在點P,使△PAB的面積為?若存在,請求出符合條件的所有點P的坐標;若不存在,請說明理由,
參考答案一、選擇題(每題4分,共48分)1、C【分析】直接利用特殊角的三角函數值得出∠C=30°,∠A=45°,進而得出答案.【詳解】解:∵tanC=,cosA=,
∴∠C=30°,∠A=45°,
∴∠B=180°-∠C-∠A=105°.
故選:C.【點睛】此題主要考查了特殊角的三角函數值,正確記憶相關數據是解題關鍵.2、A【分析】根據孔廟和東山公園的位置,可知坐標軸的原點、單位長度、坐標軸的正方向,據此建立平面直角坐標系,從而可得體育場的位置.【詳解】由題意可建立如下圖所示的平面直角坐標系:平面直角坐標系中,原點O表示孔廟的位置,點A表示東山公園的位置,點B表示體育場的位置則點B的坐標為故選:A.【點睛】本題考查了已知點在平面直角坐標系中的位置求其坐標,依據題意正確建立平面直角坐標系是解題關鍵.3、B【分析】先根據特殊角的三角函數值求出∠A,∠B的值,再根據三角形內角和定理求出∠C即可判斷三角形的形狀?!驹斀狻俊遲anA=1,sinB=,∴∠A=45°,∠B=45°.∴AC=BC又∵三角形內角和為180°,∴∠C=90°.∴△ABC是等腰直角三角形.故選:B.【點睛】本題考查了特殊角的三角函數值,解答此題的關鍵是熟記特殊角的三角函數值.需要注意等角對等邊判定等腰三角形。4、D【分析】本題是關于x的不等式,應先只把x看成未知數,求得x的解集,再根據數軸上的解集,來求得a的值.【詳解】2x>m?3,解得x>,∵在數軸上的不等式的解集為:x>?2,∴=?2,解得m=?1;故選:D.【點睛】當題中有兩個未知字母時,應把關于某個字母的不等式中的字母當成未知數,求得解集,再根據數軸上的解集進行判斷,求得另一個字母的值.5、D【解析】試題分析:A.當∠ABP=∠C時,又∵∠A=∠A,∴△ABP∽△ACB,故此選項錯誤;B.當∠APB=∠ABC時,又∵∠A=∠A,∴△ABP∽△ACB,故此選項錯誤;C.當時,又∵∠A=∠A,∴△ABP∽△ACB,故此選項錯誤;D.無法得到△ABP∽△ACB,故此選項正確.故選D.考點:相似三角形的判定.6、C【分析】由可得到∽,依據平行線分線段成比例定理和相似三角形的性質進行判斷即可.【詳解】解:A.∵,∴,故不正確;B.∵,∴,故不正確;C.∵,∴∽,∽,,.,故正確;D.∵,∴,故不正確;故選C.【點睛】本題主要考查的是相似三角形的判定和性質,熟練掌握相似三角形的性質和判定定理是解題的關鍵.7、C【分析】根據題意利用二次函數的性質,對選項逐一判斷后即可得到答案.【詳解】解:A.,開口向上,此選項錯誤;B.與軸的交點為(0,21),在軸的上方,此選項錯誤;C.與軸沒有交點,此選項正確;D.開口向上,對稱軸為x=6,時隨的增大而減小,此選項錯誤.故選:C.【點睛】本題考查二次函數的性質,解答本題的關鍵是明確題意,熟練掌握并利用二次函數的性質解答.8、A【分析】由拋物線的開口方向判斷a與2的關系,由拋物線與y軸的交點判斷c與2的關系,然后根據對稱軸判定b與2的關系以及2a+b=2;當x=﹣1時,y=a﹣b+c;然后由圖象確定當x取何值時,y>2.【詳解】①∵對稱軸在y軸右側,∴a、b異號,∴ab<2,故正確;②∵對稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當x=﹣1時,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯誤;④根據圖示知,當m=1時,有最大值;當m≠1時,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實數).故正確.⑤如圖,當﹣1<x<3時,y不只是大于2.故錯誤.故選A.【點睛】本題主要考查了二次函數圖象與系數的關系,關鍵是熟練掌握①二次項系數a決定拋物線的開口方向,當a>2時,拋物線向上開口;當a<2時,拋物線向下開口;②一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時(即ab>2),對稱軸在y軸左;當a與b異號時(即ab<2),對稱軸在y軸右.(簡稱:左同右異)③常數項c決定拋物線與y軸交點,拋物線與y軸交于(2,c).9、C【分析】先計算出∠PBC+∠PCB=45°,則∠BPC=135°,利用圓周角定理可判斷點P在以BC為弦的⊙O上,如圖,連接OA交于P′,作所對的圓周角∠BQC,利用圓周角定理計算出∠BOC=90°,從而得到△OBC為等腰直角三角形,四邊形ABOC為正方形,所以OA=BC=2,OB=,根據三角形三邊關系得到AP≥OA﹣OP(當且僅當A、P、O共線時取等號,即P點在P′位置),于是得到AP的最小值.【詳解】解:∵△ABC為等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴點P在以BC為弦的⊙O上,如圖,連接OA交于P′,作所對的圓周角∠BQC,則∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC為等腰直角三角形,∴四邊形ABOC為正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(當且僅當A、P、O共線時取等號,即P點在P′位置),∴AP的最小值為2﹣.故選:C.【點睛】本題考查了圓周角定理及等腰直角三角形的性質.圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.10、A【解析】試題分析:因為=2,所以與是同類二次根式,所以A正確;因為與不是同類二次根式,所以B錯誤;因為,所以與不是同類二次根式,所以B錯誤;因為,所以與不是同類二次根式,所以B錯誤;故選A.考點:同類二次根式11、B【分析】把x=﹣1代入方程x1﹣mx﹣3=0得1+m﹣3=0,然后解關于m的方程即可.【詳解】解:把x=﹣1代入方程x1﹣mx﹣3=0得1+m﹣3=0,解得m=1.故選:B.【點睛】本題主要考查對一元二次方程的解,解一元一次方程,等式的性質等知識點的理解和掌握12、D【分析】首先可求出菱形的邊長,設菱形的兩對角線分別為8x,6x,由勾股定理求出x的值,從而可得兩條對角線的長,根據菱形的面積等于對角線乘積的一半列式計算即可求解.【詳解】解:∵菱形的邊長是20cm,∴菱形的邊長=20÷4=5cm,∵菱形的兩條對角線長的比是,∴設菱形的兩對角線分別為8x,6x,∵菱形的對角線互相平分,∴對角線的一半分別為4x,3x,由勾股定理得:,解得:x=1,∴菱形的兩對角線分別為8cm,6cm,∴菱形的面積=cm2,故選:D.【點睛】本題考查了菱形的性質、勾股定理,主要理由菱形的對角線互相平分的性質,以及菱形的面積等于對角線乘積的一半.二、填空題(每題4分,共24分)13、45°【分析】由題意直接利用特殊角的三角函數值,進行分析計算進而得出答案.【詳解】解:∵,∴a-15°=30°,∴a=45°.故答案為:45°.【點睛】本題主要考查特殊角的三角函數值,牢記是特殊角的三角函數值解題的關鍵.14、-12【分析】根據一元二次方程的解及根與系數的關系,得出兩根之和與兩根之積,再將待求式利用完全平方公式表示成關于兩根之和與兩根之積的式子,最后代入求值即可.【詳解】解:∵方程x2﹣2x﹣4=0的兩個實數根為,∴,∴=-4-8=-12.故答案為:-12.【點睛】本題考查了根與系數的關系以及一元二次方程的解,將待求式利用完全平方公式表示成關于兩根之和與兩根之積的式子是解題的關鍵.15、【分析】先在CB上取一點F,使得CF=,再連接PF、AF,然后利用相似三角形的性質和勾股定理求出AF,即可解答.【詳解】解:如圖:在CB上取一點F,使得CF=,再連接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵,∴又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴∴PA+PB=PA+PF,∵PA+PF≥AF,AF=∴PA+PB≥.∴PA+PB的最小值為,故答案為.【點睛】本題考查了勾股定理、相似三角形的判定和性質等知識,正確添加常用輔助線、構造相似三角形是解答本題的關鍵.16、-4【分析】將x=1代入方程求解即可.【詳解】將x=1代入方程得4+a=0,解得a=-4,故答案為:-4.【點睛】此題考查一元二次方程的解,使方程左右兩邊相等的未知數的值是方程的解,已知方程的解時將解代入方程求參數即可.17、【分析】設AD=DC=a,根據勾股定理求出AC,易證△AFD∽△CFE,根據相似三角形的性質,可得:=2,進而求得CF,OF的長,由銳角的正切三角函數定義,即可求解.【詳解】∵四邊形ABCD是正方形,∴∠ADC=90°,AC⊥BD,設AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中點,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案為:.【點睛】本題主要考查相似三角形的判定和性質定理以及正切三角函數的定義,根據題意,設AD=DC=a,表示出OF,OD的長度,是解題的關鍵.18、【分析】直接利用負指數冪法則以及絕對值的代數意義和零指數冪的法則、算術平方根的性質分別化簡得出答案.【詳解】解:原式=,故答案為:.【點睛】此題主要考查了負指數冪法則以及絕對值的代數意義和零指數冪的法則、算術平方根的性質,正確利用法則化簡各數是解題關鍵.三、解答題(共78分)19、(1)見圖(2)AD=.【解析】(1)圖形見詳解,(2)根據相似列比例式即可求解.【詳解】解:(1)見下圖(2)∵△ACD∽△ABC,∴AC:AB=AD:AC,∵AB=8,AC=6,∴AD=.【點睛】本題考查了尺規(guī)作圖和相似三角形的性質,中等難度,熟悉尺規(guī)作圖步驟和相似三角形的性質是解題關鍵.20、(1)證明見解析;(2)48°.【分析】(1)根據對頂角與三角形的外角定理即可求解;(2)根據圓內接四邊形得到,再根據三角形的內角和及外角定理即可求解.【詳解】,,,;(2),,.,且,,,.【點睛】此題主要考查圓內的角度求解,解題的關鍵是熟知三角形的內角和及圓內接四邊形的性質.21、(1)證明見解析;(2)證明見解析;(3)sin∠ADB的值為.【分析】(1)根據等角的余角相等即可證明;(2)連接OA、OB.只要證明△OCB≌△OCA即可解決問題;(3)如圖3中,連接BN,過點O作OP⊥BD于點P,過點O作OQ⊥AC于點Q,則四邊形OPHQ是矩形,可知BN是直徑,則HQ=OP=DN=,設AH=x,則AQ=x+,AC=2AQ=2x+1,BC=2x+1,CH=AC﹣AH=2x+1﹣x=x+1,在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2即(2x+1)2=()2﹣x2+(x+1)2,解得x=3,BC=2x+1=15,CH=x+1=12求出sin∠BCH,即為sin∠ADB的值.【詳解】(1)證明:如圖1,∵AC⊥BD,DE⊥BC,∴∠AHD=∠BED=10°,∴∠DAH+∠ADH=10°,∠DBE+∠BDE=10°,∵∠DAC=∠DBC,∴∠ADH=∠BDE,∴BD平分∠ADF;(2)證明:連接OA、OB.∵OB=OC=OA,AC=BC,∴△OCB≌△OCA(SSS),∴∠OCB=∠OCA,∴OC平分∠ACB;(3)如圖3中,連接BN,過點O作OP⊥BD于點P,過點O作OQ⊥AC于點Q.則四邊形OPHQ是矩形,∵DN∥AC,∴∠BDN=∠BHC=10°,∴BN是直徑,則OP=DN=,∴HQ=OP=,設AH=x,則AQ=x+,AC=2AQ=2x+1,BC=AC=2x+1,∴CH=AC﹣AH=2x+1﹣x=x+1在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2,即(2x+1)2=()2﹣x2+(x+1)2,整理得2x2+1x﹣45=0,(x﹣3)(2x+15)=0,解得:x=3(負值舍去),BC=2x+1=15,CH=x+1=12,BH=1∵∠ADB=∠BCH,∴sin∠ADB=sin∠BCH===.即sin∠ADB的值為.【點睛】本題考查了圓的垂徑定理、銳角三角函數、勾股定理、全等三角形的判定和性質、矩形的判定和性質、三角形的中位線定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形或特殊四邊形解決問題,屬于中考壓軸題.22、(1)見解析;(2)DH=2.【分析】(1)連接AD,根據直徑所對的圓周角是直角,即可求出∠ADB=90°,從而得出AD⊥BC,最后根據三線合一即可證出結論;(2)連接OE,根據菱形的性質可得OA=OE=AE,從而證出△AOE是等邊三角形,從而得出∠A=60°,然后根據等邊三角形的判定即可證出△ABC是等邊三角形,從而求出∠C,根據(1)的結論即可求出CD,最后根據銳角三角函數即可求出DH.【詳解】(1)證明:如圖,連接AD.∵AB是直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD.(2)解:如圖,連接OE.∵四邊形AODE是菱形,∴OA=OE=AE,∴△AOE是等邊三角形,∴∠A=60°,∵AB=AC,∴△ABC是等邊三角形,∴∠C=60°,∵CD=BD=,∴DH=CD?sinC=2.【點睛】此題考查的是圓周角定理推論、等腰三角形的性質、菱形的性質、等邊三角形的判定及性質和解直角三角形,掌握直徑所對的圓周角是直角、三線合一、菱形的性質、等邊三角形的判定及性質和利用銳角三角函數解直角三角形是解決此題的關鍵.23、(1)5厘米2;(2)秒或秒;(3)秒或秒或秒或秒.【分析】(1)求出BP,CQ的長,即可求得四邊形BCQP面積.(2)過Q點作QH⊥AB于點H,應用勾股定理列方程求解即可.(3)分PD=DQ,PD=PQ,DQ=PQ三種情況討論即可.【詳解】(1)當t=1秒時,BP=6-2t=4,CQ=t=1,∴四邊形BCQP面積=厘米2.(2)如圖,過Q點作QH⊥AB于點H,則PH=BP-CQ=6-3t,HQ=2,根據勾股定理,得,解得.∴當秒或秒時,點P和點Q距離是3cm.(3)∵,當PD=DQ時,,解得或(舍去);當PD=PQ時,,解得或(舍去);當DQ=PQ時,,解得或.綜上所述,當秒或秒或秒或秒時,以點P、Q、D為頂點的三角形是等腰三角形.24、(1)①1;②m>2或m<0;(2)﹣<a≤﹣或a=1.【分析】(1)當a=1時,①根據二次函數一般式對稱軸公式,即可求得拋物線G的對稱軸;②根據拋物線的對稱性求得關于對稱軸的對稱點為,再利用二次函數圖像的增減性即可求得答案;(2)根據平移的性質得出、,由題意根據函數圖象分三種情況進行討論,即可得解.【詳解】解:(1)①∵當a=1時,拋物線G:y=ax2﹣2ax+1(a≠0)為:∴拋物線G的對稱軸為;②畫出函數圖象:∵在拋物線G上有兩點(2,y1),(m,y2),且y2>y1,,∴①當時,隨的增大而增大,此時有;②當時,隨的增大而減小,拋物線G上點關于對稱軸的對稱點為,此時有.∴m的取值范圍是或;(2)∵拋物線G:y=ax2﹣2ax+1(a≠0的對稱軸為x=1,且對稱軸與x軸交于點M∴點M的坐標為(1,0)∵點M與點A關于y軸對稱∴點A的坐標為(﹣1,0)∵點M右移3個單位得到點B∴點B的坐標為(1,0)依題意,拋物線G與線段AB恰有一個公共點把點A(﹣1,0)代入y=ax2﹣2ax+1,可得;把點B(1,0)代入y=ax2﹣2ax+1,可得;把點M(1,0)代入y=ax2﹣2ax+1,可得a=1.根據所畫圖象可知拋物線G與線段AB恰有一個公共點時可得:或.故答案是:(1)①1;②m>2或m<0;(2)或【點睛】本題考查了二次函數圖像的性質、二次函數圖象上的點的坐標特征以及坐標平移,解決本題的關鍵是綜合利用二次函數圖象的性質.25、(1);(2)3;(3)面積的最大值為.【分析】(1)由題意分別將x=0、y=0代入二次函數解析式中求出點C、A的坐標,再根據點A、C的坐標利用待定系數法即可求出直線AC的解析式;(2)由題意先根據二次函數解析式求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農業(yè)科技創(chuàng)新基金管理合同
- 二零二五年度環(huán)保材料原材料采購合同3篇
- 二零二五年智能路燈系統(tǒng)研發(fā)與推廣應用合同3篇
- 2025版紅磚建材買賣合同(保溫隔熱專用)2篇
- 主題餐廳裝修合同協(xié)議
- 塑料廢渣回收服務合同
- 高考地理一輪專項復習必刷題:北美洲與美國(原卷版+解析版)
- 地產開發(fā)項目土地使用權合同
- 水生態(tài)修復工程承包合同
- 2024年新媒體運營代理合同
- 2024-2025學年八年級數學人教版上冊寒假作業(yè)(綜合復習能力提升篇)(含答案)
- 2024年國家保密法知識競賽經典題庫及完整答案【必刷】
- 《子路、曾皙、冉有、公西華侍坐》課件()
- 2023《住院患者身體約束的護理》團體標準解讀PPT
- 國外文化消費研究述評
- 部編版語文四年級下冊第一單元 迷人的鄉(xiāng)村風景 大單元整體教學設計
- 湖南省長郡中學2023-2024學年高二下學期寒假檢測(開學考試)物理 含解析
- 五年級行程問題應用題100道
- 血透病人體重健康宣教
- 脾破裂護理查房
- 人教版高中物理必修一全套課件【精品】
評論
0/150
提交評論