浙江省金華市名校2024屆高三年級下學期期末質量檢測試題數(shù)學試題_第1頁
浙江省金華市名校2024屆高三年級下學期期末質量檢測試題數(shù)學試題_第2頁
浙江省金華市名校2024屆高三年級下學期期末質量檢測試題數(shù)學試題_第3頁
浙江省金華市名校2024屆高三年級下學期期末質量檢測試題數(shù)學試題_第4頁
浙江省金華市名校2024屆高三年級下學期期末質量檢測試題數(shù)學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省金華市名校2024屆高三年級下學期期末質量檢測試題數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,若,則()A. B. C. D.2.古希臘數(shù)學家畢達哥拉斯在公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.3.對于函數(shù),若滿足,則稱為函數(shù)的一對“線性對稱點”.若實數(shù)與和與為函數(shù)的兩對“線性對稱點”,則的最大值為()A. B. C. D.4.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.45.已知集合,集合,那么等于()A. B. C. D.6.設,滿足約束條件,則的最大值是()A. B. C. D.7.中國古代用算籌來進行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數(shù)時,像阿拉伯記數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.8.已知正項等比數(shù)列中,存在兩項,使得,,則的最小值是()A. B. C. D.9.在中,為中點,且,若,則()A. B. C. D.10.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件11.設全集U=R,集合,則()A. B. C. D.12.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)若關于的不等式的解集是,則的值為_____.14.某班有學生52人,現(xiàn)將所有學生隨機編號,用系統(tǒng)抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學生在樣本中,則樣本中還有一個學生的編號是__________.15.某高校開展安全教育活動,安排6名老師到4個班進行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.16.已知函數(shù)有且只有一個零點,則實數(shù)的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.18.(12分)已知函數(shù)(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.20.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值.21.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.22.(10分)已知矩陣,.求矩陣;求矩陣的特征值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

由平行求出參數(shù),再由數(shù)量積的坐標運算計算.【題目詳解】由,得,則,,,所以.故選:B.【題目點撥】本題考查向量平行的坐標表示,考查數(shù)量積的坐標運算,掌握向量數(shù)量積的坐標運算是解題關鍵.2、B【解題分析】

推導出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【題目詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.【題目點撥】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.3、D【解題分析】

根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結論.【題目詳解】依題意知,與為函數(shù)的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數(shù)的“線性對稱點,所以,所以,從而的最大值為.故選:D.【題目點撥】本題以新定義為背景,考查指數(shù)函數(shù)的運算和圖像性質、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.4、C【解題分析】

方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據(jù)拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯(lián)立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【題目詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C【題目點撥】本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.5、A【解題分析】

求出集合,然后進行并集的運算即可.【題目詳解】∵,,∴.故選:A.【題目點撥】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎題.6、D【解題分析】

作出不等式對應的平面區(qū)域,由目標函數(shù)的幾何意義,通過平移即可求z的最大值.【題目詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內平移當過點時,取得最大值.由得:,故選:D【題目點撥】本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法,屬于基礎題.7、B【解題分析】

根據(jù)題意表示出各位上的數(shù)字所對應的算籌即可得答案.【題目詳解】解:根據(jù)題意可得,各個數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.【題目點撥】本題主要考查學生的合情推理與演繹推理,屬于基礎題.8、C【解題分析】

由已知求出等比數(shù)列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【題目詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【題目點撥】本題考查等比數(shù)列通項公式基本量的計算及最小值,屬于基礎題.9、B【解題分析】

選取向量,為基底,由向量線性運算,求出,即可求得結果.【題目詳解】,,,,,.故選:B.【題目點撥】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎題.10、A【解題分析】

畫出“,,,所表示的平面區(qū)域,即可進行判斷.【題目詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【題目點撥】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.11、A【解題分析】

求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【題目詳解】,,則,故選:A.【題目點撥】本題考查集合的交集和補集的運算,考查指數(shù)不等式和二次不等式的解法,屬于基礎題.12、D【解題分析】

根據(jù)拋物線的定義,結合,求出的坐標,然后求出的斜率即可.【題目詳解】解:拋物線的焦點,準線方程為,設,則,故,此時,即.則直線的斜率.故選:D.【題目點撥】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

根據(jù)題意可知的兩根為,再根據(jù)解集的區(qū)間端點得出參數(shù)的關系,再求解即可.【題目詳解】解:因為函數(shù),關于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【題目點撥】本題主要考查了不等式的解集與參數(shù)之間的關系,屬于基礎題.14、18【解題分析】

根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,故可根據(jù)其中三個個體的編號求出另一個個體的編號.【題目詳解】解:根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18【題目點撥】本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡單題.15、156【解題分析】

先考慮每班安排的老師人數(shù),然后計算出對應的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【題目詳解】安排6名老師到4個班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.【題目點撥】本題考查排列組合的綜合應用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過“正難則反”的思想進行分析.16、【解題分析】

當時,轉化條件得有唯一實數(shù)根,令,通過求導得到的單調性后數(shù)形結合即可得解.【題目詳解】當時,,故不是函數(shù)的零點;當時,即,令,,,當時,;當時,,的單調減區(qū)間為,增區(qū)間為,又,可作出的草圖,如圖:則要使有唯一實數(shù)根,則.故答案為:.【題目點撥】本題考查了導數(shù)的應用,考查了轉化化歸思想和數(shù)形結合思想,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)利用二倍角公式及三角形內角和定理,將化簡為,求出的值,結合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結合,,求出的范圍,注意.進而求出周長的范圍.【題目詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【題目點撥】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應用,求三角形的周長的范圍問題.屬于中檔題.18、(1);(2)【解題分析】

(1)當時,由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉化為在上恒成立,得到,即可求解.【題目詳解】(1)由題意,當時,由,可得,令,則只需,當時,;當時,;當時,;故當時,取得最小值,即的最大值為.(2)依題意,當時,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實數(shù)的取值范圍是.【題目點撥】本題主要考查了含絕對值的不等式的解法,以及不等式的恒成立問題的求解與應用,著重考查了轉化思想,以及推理與計算能力.19、(1)證明見解析(2)【解題分析】

(1)利用線段長度得到與間的垂直關系,再根據(jù)線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦值,計算出結果.【題目詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標原點,分別以、、為軸、軸、軸建立空間直角坐標系,則,,,,,,,∵,∴,設是平面的一個法向量則,即,取得∴∴直線與平面所成的正弦值為【題目點撥】本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時,注意直線方向向量與平面法向量夾角的余弦值的絕對值等于線面角的正弦值.20、(1)證明見解析(2)(3)【解題分析】

(1)取中點為,連接,由等邊三角形性質可得,再由面面垂直的性質可得,根據(jù)平行直線的性質可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數(shù)量積求解;(3)設,,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【題目詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內,所以,所以.(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,則,,,,因為在棱上,可設,所以,設平面的法向量為,因為,所以,即,令,可得,即,設直線與平面所成角為,所以,可知當時,取最大值.(3)設,則有,得,設,那么,所以,所以.因為,,所以.又因為,所以,,設平面的法向量為,則,即,,可得,即因為在平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論