2023年遼寧省大連高新區(qū)名校聯(lián)盟數(shù)學九年級第一學期期末檢測試題含解析_第1頁
2023年遼寧省大連高新區(qū)名校聯(lián)盟數(shù)學九年級第一學期期末檢測試題含解析_第2頁
2023年遼寧省大連高新區(qū)名校聯(lián)盟數(shù)學九年級第一學期期末檢測試題含解析_第3頁
2023年遼寧省大連高新區(qū)名校聯(lián)盟數(shù)學九年級第一學期期末檢測試題含解析_第4頁
2023年遼寧省大連高新區(qū)名校聯(lián)盟數(shù)學九年級第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年遼寧省大連高新區(qū)名校聯(lián)盟數(shù)學九年級第一學期期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.已知地球上海洋面積約為361000000km2,361000000這個數(shù)用科學記數(shù)法可表示為()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1092.如圖所示的網(wǎng)格是正方形網(wǎng)格,圖中△ABC繞著一個點旋轉(zhuǎn),得到△A'B'C',點C的對應點C'所在的區(qū)域在1區(qū)~4區(qū)中,則點C'所在單位正方形的區(qū)域是()A.1區(qū) B.2區(qū) C.3區(qū) D.4區(qū)3.己知⊙的半徑是一元二次方程的一個根,圓心到直線的距離.則直線與⊙的位置關系是A.相離 B.相切 C.相交 D.無法判斷4.如圖,在同一直角坐標系中,正比例函數(shù)y=kx+3與反比例函數(shù)的圖象位置可能是()A. B. C. D.5.如圖,AB是⊙O直徑,若∠AOC=100°,則∠D的度數(shù)是()A.50° B.40° C.30° D.45°6.拋物線y=(x﹣2)2+3的頂點坐標是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)7.已知△ABC的外接圓⊙O,那么點O是△ABC的()A.三條中線交點 B.三條高的交點C.三條邊的垂直平分線的交點 D.三條角平分線交點8.一元二次方程x2+4x=﹣3用配方法變形正確的是()A.(x﹣2)=1 B.(x+2)=1 C.(x﹣2)=﹣1 D.(x+2)=﹣19.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點E,EF⊥BD垂足為F.則下列結(jié)論錯誤的是()A.AEEC=BEED B.AE10.拋物線y=x2先向右平移1個單位,再向上平移3個單位,得到新的拋物線解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3二、填空題(每小題3分,共24分)11.如圖,在矩形ABCD中,∠ABC的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=8,DF=3FC,則BC=__________.12.如圖,在正方形ABCD中,點E在BC邊上,且BC=3BE,AF平分∠DAE,交DC于點F,若AB=3,則點F到AE的距離為___________.13.圖形之間的變換關系包括平移、______、軸對稱以及它們的組合變換.14.如圖,是半圓的直徑,,則的度數(shù)是_______.15.若是關于x的一元二次方程的解,則代數(shù)式的值是________.16.如圖,點B是反比例函數(shù)y=(x>0)的圖象上任意一點,AB∥x軸并交反比例函數(shù)y=﹣(x<0)的圖象于點A,以AB為邊作平行四邊形ABCD,其中C、D在x軸上,則平行四邊形ABCD的面積為_____.17.將一元二次方程變形為的形式為__________.18.已知弧長等于3,弧所在圓的半徑為6,則該弧的度數(shù)是____________.三、解答題(共66分)19.(10分)甲、乙兩人用如圖所示的轉(zhuǎn)盤(每個轉(zhuǎn)盤被分成面積相等的6個扇形)做游戲,轉(zhuǎn)動轉(zhuǎn)盤停止時,得到指針所在區(qū)域的數(shù)字,若指針落在分界線上,則不計入次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤記數(shù).(1)任意轉(zhuǎn)動轉(zhuǎn)盤一次,求指針落在奇數(shù)區(qū)域的概率;(2)若游戲規(guī)則如下:甲乙分別轉(zhuǎn)盤一次,記下兩次指針所在區(qū)域數(shù)字,若兩次的數(shù)字為一奇一偶,則甲贏;若兩次的數(shù)字同為奇數(shù)或同為偶數(shù),則乙贏.請用列表法或畫樹狀圖的方法計算甲、乙獲勝的概率,并說明這個游戲規(guī)則是否公平.20.(6分)在中,,,,點從出發(fā)沿方向在運動速度為3個單位/秒,點從出發(fā)向點運動,速度為1個單位/秒,、同時出發(fā),點到點時兩點同時停止運動.(1)點在線段上運動,過作交邊于,時,求的值;(2)運動秒后,,求此時的值;(3)________時,.21.(6分)小紅想利用陽光下的影長測量學校旗桿AB的高度.如圖,他在某一時刻在地面上豎直立一個2米長的標桿CD,測得其影長DE=0.4米.(1)請在圖中畫出此時旗桿AB在陽光下的投影BF.(2)如果BF=1.6,求旗桿AB的高.22.(8分)已知函數(shù),(m,n,k為常數(shù)且≠0)(1)若函數(shù)的圖像經(jīng)過點A(2,5),B(-1,3)兩個點中的其中一個點,求該函數(shù)的表達式.(2)若函數(shù),的圖像始終經(jīng)過同一個定點M.①求點M的坐標和k的取值②若m≤2,當-1≤x≤2時,總有≤,求m+n的取值范圍.23.(8分)一次函數(shù)分別與軸、軸交于點、.頂點為的拋物線經(jīng)過點.(1)求拋物線的解析式;(2)點為第一象限拋物線上一動點.設點的橫坐標為,的面積為.當為何值時,的值最大,并求的最大值;(3)在(2)的結(jié)論下,若點在軸上,為直角三角形,請直接寫出點的坐標.24.(8分)平面直角坐標系中有點和某一函數(shù)圖象,過點作軸的垂線,交圖象于點,設點,的縱坐標分別為,.如果,那么稱點為圖象的上位點;如果,那么稱點為圖象的圖上點;如果,那么稱點為圖象的下位點.(1)已知拋物線.①在點A(-1,0),B(0,-2),C(2,3)中,是拋物線的上位點的是;②如果點是直線的圖上點,且為拋物線的上位點,求點的橫坐標的取值范圍;(2)將直線在直線下方的部分沿直線翻折,直線的其余部分保持不變,得到一個新的圖象,記作圖象.⊙的圓心在軸上,半徑為.如果在圖象和⊙上分別存在點和點F,使得線段EF上同時存在圖象的上位點,圖上點和下位點,求圓心的橫坐標的取值范圍.25.(10分)某商場要經(jīng)營一種新上市的文具,進價為20元/件,試營銷階段發(fā)現(xiàn):當銷售價格為25元/件時,每天的銷售量為250件,每件銷售價格每上漲1元,每天的銷售量就減少10件.(1)當銷售價格上漲時,請寫出每天的銷售量(件)與銷售價格(元/件)之間的函數(shù)關系式.(2)如果要求每天的銷售量不少于10件,且每件文具的利潤至少為18元,間當銷售價格定為多少時,該文具每天的銷售利潤最大,最大利潤為多少?26.(10分)一元二次方程的一個根為,求的值及方程另一根.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于1時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).解答:解:將361000000用科學記數(shù)法表示為3.61×1.故選C.2、D【分析】如圖,連接AA',BB',分別作AA',BB'的中垂線,兩直線的交點即為旋轉(zhuǎn)中心,從而便可判斷出點C'位置.【詳解】如圖,連接AA',BB',分別作AA',BB'的中垂線,兩直線的交點O即為旋轉(zhuǎn)中心,連接OC,易得旋轉(zhuǎn)角為90°,從而進一步即可判斷出點C'位置.在4區(qū).故選:D.【點睛】本題主要考查了圖形的旋轉(zhuǎn),熟練掌握相關方法是解題關鍵.3、A【分析】在判斷直線與圓的位置關系時,通常要得到圓心到直線的距離,然后再利用d與r的大小關系進行判斷;在直線與圓的問題中,充分利用構(gòu)造的直角三角形來解決問題,直線與圓的位置關系:①當d>r時,直線與圓相離;②當d=r時,直線與圓相切;③當d<r時,直線與圓相交.【詳解】∵的解為x=4或x=-1,∴r=4,∵4<6,即r<d,∴直線和⊙O的位置關系是相離.故選A.【點睛】本題主要考查了直線與圓的位置關系,一元二次方程的定義及一般形式,掌握直線與圓的位置關系,一元二次方程的定義及一般形式是解題的關鍵.4、A【解析】先根據(jù)一次函數(shù)的性質(zhì)判斷出k取值,再根據(jù)反比例函數(shù)的性質(zhì)判斷出k的取值,二者一致的即為正確答案.【詳解】當k>0時,有y=kx+3過一、二、三象限,反比例函數(shù)的過一、三象限,A正確;由函數(shù)y=kx+3過點(0,3),可排除B、C;當k<0時,y=kx+3過一、二、四象限,反比例函數(shù)的過一、三象限,排除D.故選A.【點睛】本題主要考查了反比例函數(shù)的圖象性質(zhì)和一次函數(shù)的圖象性質(zhì),關鍵是由k的取值確定函數(shù)所在的象限.5、B【分析】根據(jù)∠AOB=180°,∠AOC=100°,可得出∠BOC的度數(shù),最后根據(jù)圓周角∠BDC與圓心角∠BOC所對的弧都是弧BC,即可求出∠BDC的度數(shù).【詳解】解:∵AB是⊙O直徑,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所對的圓周角是∠BDC,圓心角是∠BOC,∴;故答案選B.【點睛】本題考查同圓或等圓中,同弧或等弧所對的圓周角是圓心角的一半,在做題時遇到已知圓心角,求圓周角的度數(shù),可以通過計算,得出相應的圓心角的度數(shù),即可得出圓周角的度數(shù).6、A【分析】根據(jù)拋物線的頂點式可直接得到頂點坐標.【詳解】解:y=(x﹣2)2+3是拋物線的頂點式方程,根據(jù)頂點式的坐標特點可知,頂點坐標為(2,3).故選:A.【點睛】本題考查了二次函數(shù)的頂點式與頂點坐標,頂點式y(tǒng)=(x-h)2+k,頂點坐標為(h,k),對稱軸為直線x=h,難度不大.7、C【分析】根據(jù)三角形外接圓圓心的確定方法,結(jié)合垂直平分線的性質(zhì),即可求得.【詳解】已知⊙O是△ABC的外接圓,那么點O一定是△ABC的三邊的垂直平分線的交點,故選:C.【點睛】本題考查三角形外接圓圓心的確定,屬基礎題.8、B【分析】根據(jù)一元二次方程的配方法即可求出答案.【詳解】解:∵x2+4x=﹣3,∴x2+4x+4=1,∴(x+2)2=1,故選:B.【點睛】本題考查解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.9、A【解析】利用平行線的性質(zhì)以及相似三角形的性質(zhì)一一判斷即可.【詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項故選:A.【點睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.10、D【分析】按“左加右減,上加下減”的規(guī)律平移即可得出所求函數(shù)的解析式.【詳解】拋物線y=x2先向右平移1個單位得y=(x﹣1)2,再向上平移3個單位得y=(x﹣1)2+3.故選D.【點睛】本題考查了二次函數(shù)圖象的平移,其規(guī)律是是:將二次函數(shù)解析式轉(zhuǎn)化成頂點式y(tǒng)=a(x-h)2+k

(a,b,c為常數(shù),a≠0),確定其頂點坐標(h,k),在原有函數(shù)的基礎上“h值正右移,負左移;k值正上移,負下移”.二、填空題(每小題3分,共24分)11、6+1.【分析】先延長EF和BC,交于點G,再根據(jù)條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據(jù)條件判斷三角形BEG為等腰三角形,最后根據(jù)△EFD∽△GFC得出比例式,DF=3FC計算得出CG與DE的倍數(shù)關系,并根據(jù)BG=BC+CG進行計算即可.【詳解】解:延長EF和BC,交于點G∵矩形ABCD中,∠B的角平分線BE與AD交于;∴∠ABE=∠AEB=45°,∴AB=AE=8,∴直角三角形ABE中,BE=8,又∵∠BED的角平分線EF與DC交于點F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=8,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC∵DF=3FC,設CG=x,DE=3x,則AD=8+3x=BC∵BG=BC+CG∴8=8+3x+x解得x=1-1,∴BC=8+3(1-1)=6+1,故答案為:6+1.【點睛】本題主要考查矩形的性質(zhì)、相似三角形性質(zhì)和判定以及等腰三角形的性質(zhì),解決問題的關鍵是得出BG=BE,從而進行計算.12、【分析】延長AE交DC延長線于M,關鍵相似求出CM的長,求出AM長,根據(jù)角平分線性質(zhì)得出比例式,代入求出即可.【詳解】延長AE交DC延長線于M,

∵四邊形ABCD是正方形,BC=3BE,BC=3,

∴AD=DC=BC=AB=3,∠D=90°,BE=1,CE=2,AB∥DC,

∴△ABE∽△MCE,

∴,

∴CM=2AB=6,

即DM=3+6=9,

由勾股定理得:,

∵AF平分∠DAE,

∴,

∴,

解得:,

∵AF平分∠DAE,∠D=90°,

∴點F到AE的距離=,

故答案為:.【點睛】本題考查了角平分線性質(zhì),勾股定理,相似三角形的性質(zhì)和判定,正方形的性質(zhì)等知識點,能正確作出輔助線是解此題的關鍵.13、旋轉(zhuǎn)【分析】圖形變換的形式包括平移、旋轉(zhuǎn)和軸對稱.【詳解】圖形變換的形式,分別為平移、旋轉(zhuǎn)和軸對稱故答案為:旋轉(zhuǎn).【點睛】本題考查了圖形變換的幾種形式,分別為平移、旋轉(zhuǎn)和軸對稱,以及他們的組合變換.14、130【分析】根據(jù)AB為直徑,得到∠ACB=90°,進而求出∠ABC,再根據(jù)圓內(nèi)接四邊形性質(zhì)即可求出∠D.【詳解】解:∵AB為直徑,∴∠ACB=90°,∴∠ABC=90°-∠CAB=90°-40°=50°,∵四邊形ABCD是圓內(nèi)接四邊形,∴∠D=180°-∠ABC=130°.故答案為:130°【點睛】本題考查了“直徑所對的角是圓周角”、“圓內(nèi)接四邊形對角互補”、“直角三角形兩銳角互余”等定理,熟知相關定理,并能靈活運用是解題關鍵.15、1【分析】把x=2代入已知方程求得2a+b的值,然后將其整體代入所求的代數(shù)式并求值即可.【詳解】解:∵關于x的一元二次方程的解是x=2,∴4a+2b-8=0,則2a+b=4,∴2020+2a+b=2020+(2a+b)=2020+4=1.故答案是:1.【點睛】本題考查了一元二次方程的解定義,以及求代數(shù)式的值,解題時,利用了“整體代入”的數(shù)學思想.16、1.【分析】設A的縱坐標是b,則B的縱坐標也是b,即可求得AB的橫坐標,則AB的長度即可求得,然后利用平行四邊形的面積公式即可求解【詳解】設A的縱坐標是b,則B的縱坐標也是b把y=b代入y=得,b=則x=,即B的橫坐標是同理可得:A的橫坐標是:則AB=-()=則S=×b=1.故答案為1【點睛】此題考查反比例函數(shù)系數(shù)k的幾何意義,解題關鍵在于設A的縱坐標為b17、【分析】根據(jù)完全平方公式配方即可.【詳解】解:故答案為:.【點睛】此題考查的是配方法,掌握完全平方公式是解決此題的關鍵.18、90°【分析】把弧長公式l=進行變形,把已知數(shù)據(jù)代入計算即可得到答案.【詳解】解:∵l=,∴n===90°.

故答案為:90°.【點睛】本題考查的是弧長的計算,正確掌握弧長的計算公式及其變形是解題的關鍵.三、解答題(共66分)19、(1);(2)游戲規(guī)則公平,理由詳見解析【分析】(1)直接根據(jù)概率公式求解即可得出答案;

(2)根據(jù)題意畫出樹狀圖得出所有等可能的情況數(shù),再找出符合條件的情況數(shù),然后根據(jù)概率公式即可得出答案.【詳解】解:(1)P(指針落在奇數(shù)區(qū)域)=.(2)列表如下:(畫樹形圖評分方案同列表)1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知,P(甲獲勝)=P(一奇一偶)=,P(乙獲勝)=P(同奇或同偶)=,P(甲獲勝)=P(乙獲勝)=,所以,游戲規(guī)則公平【點睛】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)2;(2)或;(3)【分析】(1)如圖1中,作于,于,利用勾股定理求出AC=10,根據(jù),得到,求出,,,證明四邊形是矩形,得到,證明,得到;(2)作于,根據(jù),得到,求出,,,再證明,得到,即可求出或;(3)如圖3中作于,證明,求出,利用得到,根據(jù)即可列式求出t.【詳解】(1)如圖1中,作于,于,∵,,,∴AC=10,∵,∴,,∵,∴,∴,∴,,,∵,∴四邊形是矩形,∴,∵,∴,∴,∴.(2)如圖2中,作于,∵,∴,∴,,,∵,,∴,∴,∴,∴或.(3)如圖3中作于,∵,,∴,∴,∴,∵,∴,∵,∴,整理得:,解得(或舍棄).故答案為:.【點睛】此題考查勾股定理,相似三角形的判定及性質(zhì),矩形的判定及性質(zhì),三角形與動點問題,是一道比較綜合的三角形題.21、(1)見解析(2)8m【詳解】試題分析:(1)利用太陽光線為平行光線作圖:連結(jié)CE,過A點作AF∥CE交BD于F,則BF為所求;(2)證明△ABF∽△CDE,然后利用相似比計算AB的長.試題解析:(1)連結(jié)CE,過A點作AF∥CE交BD于F,則BF為所求,如圖;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴,即,∴AB=8(m),答:旗桿AB的高為8m.22、(1);(2)①M(2,3),k=3;②【分析】(1)將兩點代入解析式即可得出結(jié)果;(2)①二次函數(shù)過某定點,則函數(shù)表達式與字母系數(shù)無關,以此解決問題;②根據(jù)二次函數(shù)的性質(zhì)解題【詳解】解:(1)①若函數(shù)圖象經(jīng)過點A(2,5),將A(2,5)代入得,不成立②若函數(shù)圖象經(jīng)過點B(-1,3),將B(-1,3)代入得,解得.∴.(2)①過定點M,與m無關,故,代入,得點M為(2,3),也過點M,代入得,解得k=3.②在時,.,則,∴,即.∵,∴,∴,,∴.【點睛】此題考查含字母系數(shù)的二次函數(shù)綜合題,掌握二次函數(shù)的圖像與性質(zhì)是解題的基礎.23、(1);(2)當時,的值最大,最大值為;(3)、、或【分析】(1)設拋物線的解析式為,代入點的坐標即可求解;(2)連接,可得點,根據(jù)一次函數(shù)得出點、的坐標,然后利用三角形面積公式得出的表達式,利用二次函數(shù)的表達式即可求解;(3)①當為直角邊時,過點和點做垂線交軸于點和點,過點的垂線交軸于點,得出,再利用等腰直角三角形和坐標即可求解;②當為斜邊時,設的中點為,以為圓心為直徑做圓于軸于點和點,過點作軸,先得出和的值,再求出的值即可求解.【詳解】解:(1)一次函數(shù)與軸交于點,則的坐標為.拋物線的頂點為,設拋物線解析式為.拋物線經(jīng)過點,..拋物線解析式為;(2)解法一:連接.點為第一象限拋物線上一動點.點的橫坐標為,.一次函數(shù)與軸交于點.則,的坐標為,.,,..當時,的值最大,最大值為;解法二:作軸,交于點.的坐標為,.點為第一象限拋物線上一動點.點的橫坐標為,,...當時,的值最大,最大值為;解法三:作軸,交于點.一次函數(shù)與軸交于點.則,點為第一象限拋物線上一動點.點的橫坐標為,.把代入,解得,..當時,的值最大,最大值為;解法四:構(gòu)造矩形.(或構(gòu)造梯形)一次函數(shù)與軸交于點.則,的坐標為,.點為第一象限拋物線上一動點.點的橫坐標為,設點的縱坐標為,,,,,,,..當時,的值最大,最大值為;(3)由(2)易得點的坐標為,①當為直角邊時,過點和點做垂線交軸于點和點,過點的垂線交軸于點,如下圖所示:由點和點的坐標可知:∴∴∴點的坐標為由題可知:∴∴點的坐標為;②當為斜邊時,設的中點為,以為圓心為直徑做圓于軸于點和點,過點作軸,如下圖所示:由點和點的坐標可得點的坐標是∴,∴∴點的坐標為,點的坐標為根據(jù)圓周角定理即可知道∴點和點符合要求∴綜上所述點的坐標為、、或.【點睛】本題主要考察了待定系數(shù)法求拋物線解析式、一次函數(shù)、動點問題等,利用數(shù)形結(jié)合思想是關鍵.24、(1)①A,C.②;(2)或.【分析】(1)①分別將A,B,C三個點的橫坐標代入拋

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論