2024屆云南省楚雄市數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第1頁
2024屆云南省楚雄市數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第2頁
2024屆云南省楚雄市數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第3頁
2024屆云南省楚雄市數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第4頁
2024屆云南省楚雄市數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆云南省楚雄市數(shù)學(xué)高一下期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在三棱錐中,平面,,,,,則三棱錐外接球的體積為()A. B. C. D.2.已知等比數(shù)列的前項和為,則下列一定成立的是()A.若,則 B.若,則C.若,則 D.若,則3.函數(shù)的圖象沿軸向左平移個單位長度后得到函數(shù)的圖象的一個對稱中心是()A. B. C. D.4.平面平面,直線,,那么直線與直線的位置關(guān)系一定是()A.平行 B.異面 C.垂直 D.不相交5.已知,且,則()A. B. C. D.6.閱讀下面的程序框圖,運行相應(yīng)的程序,若輸入的值為24,則輸出的值為()A.0 B.1 C.2 D.37.已知各項均為正數(shù)的數(shù)列的前項和為,且若對任意的,恒成立,則實數(shù)的取值范圍為()A. B. C. D.8.在集合且中任取一個元素,所取元素x恰好滿足方程的概率是()A. B. C. D.9.如圖是某體育比賽現(xiàn)場上評委為某位選手打出的分?jǐn)?shù)的莖葉圖,去掉一個最高分和一個最低分,所剩數(shù)據(jù)的平均數(shù)和方差分別是()A.5和1.6 B.85和1.6 C.85和0.4 D.5和0.410.棱柱的側(cè)面一定是()A.平行四邊形 B.矩形 C.正方形 D.菱形二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,將全體正整數(shù)排成一個三角形數(shù)陣,按照這樣的排列規(guī)律,第行從右至左的第3個數(shù)為___________.12.如圖,兩個正方形,邊長為2,.將繞旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,與平面的距離最大值為______.13.在平面直角坐標(biāo)系中,點到直線的距離為______.14.不等式的解集是.15.不等式的解集是_______.16.如圖是一正方體的表面展開圖.、、都是所在棱的中點.則在原正方體中:①與異面;②平面;③平面平面;④與平面形成的線面角的正弦值是;⑤二面角的余弦值為.其中真命題的序號是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù).(1)求;(2)求函數(shù)在區(qū)間上的值域.18.已知函數(shù).(1)求的值;(2)設(shè),求的值.19.已知函數(shù),.(1)求函數(shù)的單調(diào)減區(qū)間;(2)若存在,使等式成立,求實數(shù)的取值范圍.20.如圖1,在直角梯形中,,,點在上,且,將沿折起,使得平面平面(如圖2).為中點(1)求證:;(2)求四棱錐的體積;(3)在線段上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由21.已知函數(shù).(1)當(dāng),時,求不等式的解集;(2)若,,的最小值為2,求的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

在三棱錐中,求得,又由底面,所以,在直角中,求得,進(jìn)而得到三棱錐外接球的直徑,得到,利用體積公式,即可求解.【題目詳解】由題意知,在三棱錐中,,,,所以,又由底面,所以,在直角中,,所以,根據(jù)球的性質(zhì),可得三棱錐外接球的直徑為,即,所以球的體積為,故選B.【題目點撥】本題主要考查了與球有關(guān)的組合體中球的體積的計算,其中解答中根據(jù)組合體的結(jié)構(gòu)特征和球的性質(zhì),準(zhǔn)確求解球的半徑是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.2、C【解題分析】

設(shè)等比數(shù)列的公比為q,利用通項公式與求和公式即可判斷出結(jié)論.【題目詳解】設(shè)等比數(shù)列的公比為q,若,則,則,而與0的大小關(guān)系不確定.若,則,則與同號,則與0的大小關(guān)系不確定.故選:C【題目點撥】本題主要考查了等比數(shù)列的通項公式與求和公式及其性質(zhì)、不等式的性質(zhì)與解法,考查了推理能力與計算能力,屬于中檔題.3、B【解題分析】

先求出變換后的函數(shù)的解析式,求出所得函數(shù)的對稱中心坐標(biāo),可得出正確選項.【題目詳解】函數(shù)的圖象沿軸向左平移個單位長度后得到函數(shù)的解析式為,令,得,因此,所得函數(shù)的圖象的一個對稱中心是,故選B.【題目點撥】本題考查圖象的變換以及三角函數(shù)的對稱中心,解題的關(guān)鍵就是求出變換后的三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.4、D【解題分析】

利用空間中線線、線面、面面的位置關(guān)系得出直線與直線沒有公共點.【題目詳解】由題平面平面,直線,則直線與直線的位置關(guān)系平行或異面,即兩直線沒有公共點,不相交.故選D.【題目點撥】本題考查空間中兩條直線的位置關(guān)系,屬于簡單題.5、D【解題分析】

首先根據(jù),求得,結(jié)合角的范圍,利用平方關(guān)系,求得,利用題的條件,求得,之后將角進(jìn)行配湊,使得,利用正弦的和角公式求得結(jié)果.【題目詳解】因為,所以,因為,所以.因為,,所以,所以,故選D.【題目點撥】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,正弦函數(shù)的和角公式,在解題的過程中,注意時刻關(guān)注角的范圍.6、C【解題分析】

根據(jù)給定的程序框圖,逐次循環(huán)計算,即可求解,得到答案.【題目詳解】由題意,第一循環(huán):,能被3整除,不成立,第二循環(huán):,不能被3整除,不成立,第三循環(huán):,不能被3整除,成立,終止循環(huán),輸出,故選C.【題目點撥】本題主要考查了程序框圖的識別與應(yīng)用,其中解答中根據(jù)條件進(jìn)行模擬循環(huán)計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.7、C【解題分析】

由得到an=n,任意的,恒成立等價于,利用作差法求出的最小值即可.【題目詳解】當(dāng)n=1時,,又∴∵an+12=2Sn+n+1,∴當(dāng)n≥2時,an2=2Sn﹣1+n,兩式相減可得:an+12﹣an2=2an+1,∴an+12=(an+1)2,∵數(shù)列{an}是各項均為正數(shù)的數(shù)列,∴an+1=an+1,即an+1﹣an=1,顯然n=1時,適合上式∴數(shù)列{an}是等差數(shù)列,首項為1,公差為1.∴an=1+(n﹣1)=n.任意的,恒成立,即恒成立記,,∴為單調(diào)增數(shù)列,即的最小值為∴,即故選C【題目點撥】已知求的一般步驟:(1)當(dāng)時,由求的值;(2)當(dāng)時,由,求得的表達(dá)式;(3)檢驗的值是否滿足(2)中的表達(dá)式,若不滿足則分段表示;(4)寫出的完整表達(dá)式.8、B【解題分析】

寫出集合中的元素,分別判斷是否滿足即可得解.【題目詳解】集合且的元素,,,,,,.基本事件總數(shù)為,滿足方程的基本事件數(shù)為.故所求概率.故選:B.【題目點撥】本題考查了古典概型概率的求解,屬于基礎(chǔ)題.9、B【解題分析】

去掉最低分分,最高分分,利用平均數(shù)的計算公式求得,利用方差公式求得.【題目詳解】去掉最低分分,最高分分,得到數(shù)據(jù),該組數(shù)據(jù)的平均數(shù),.【題目點撥】本題考查從莖葉圖中提取信息,并對數(shù)據(jù)進(jìn)行加工和處理,考查基本的運算求解和讀圖的能力.10、A【解題分析】根據(jù)棱柱的性質(zhì)可得:其側(cè)面一定是平行四邊形,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

由題可以先算出第行的最后一個數(shù),再從右至左算出第3個數(shù)即可.【題目詳解】由圖得,第行有個數(shù),故前行一共有個數(shù),即第行最后一個數(shù)為,故第行從右至左的第3個數(shù)為.【題目點撥】本題主要考查等差數(shù)列求和問題,注意從右至左的第3個數(shù)為最后一個數(shù)減2.12、【解題分析】

繞旋轉(zhuǎn)一周得到的幾何體是圓錐,點的軌跡是圓.過作平面平面,交平面于.的軌跡在平面內(nèi).畫出圖像,根據(jù)圖像判斷出圓的下頂點距離平面的距離最大,解三角形求得這個距離的最大值.【題目詳解】繞旋轉(zhuǎn)一周得到的幾何體是圓錐,故點的軌跡是圓.過作平面平面,交平面于.的軌跡在平面內(nèi).畫出圖像如下圖所示,根據(jù)圖像作法可知,當(dāng)位于圓心的正下方點位置時,到平面的距離最大.在平面內(nèi),過作,交于.在中,,.所以①.其中,,所以①可化為.故答案為:【題目點撥】本小題主要考查旋轉(zhuǎn)體的概念,考查空間點到面的距離的最大值的求法,考查空間想象能力和運算能力,屬于中檔題.13、2【解題分析】

利用點到直線的距離公式即可得到答案?!绢}目詳解】由點到直線的距離公式可知點到直線的距離故答案為2【題目點撥】本題主要考查點到直線的距離,熟練掌握公式是解題的關(guān)鍵,屬于基礎(chǔ)題。14、【解題分析】

因為,且拋物線開口方向向上,所以,不等式的解集是.15、【解題分析】

且,然后解一元二次不等式可得解集.【題目詳解】解:,∴且,或,不等式的解集為,故答案為:.【題目點撥】本題主要考查分式不等式的解法,關(guān)鍵是將分式不等式轉(zhuǎn)化為其等價形式,屬于基礎(chǔ)題.16、①②④【解題分析】

將正方體的表面展開圖還原成正方體,利用正方體中線線、線面以及面面關(guān)系,以及直線與平面所成角的定義和二面角的定義進(jìn)行判斷.【題目詳解】根據(jù)條件將正方體進(jìn)行還原如下圖所示:對于命題①,由圖形可知,直線與異面,命題①正確;對于命題②,、分別為所在棱的中點,易證四邊形為平行四邊形,所以,,平面,平面,平面,命題②正確;對于命題③,在正方體中,平面,由于四邊形為平行四邊形,,平面.、平面,,.則二面角所成的角為,顯然不是直角,則平面與平面不垂直,命題③錯誤;對于命題④,設(shè)正方體的棱長為,易知平面,則與平面所成的角為,由勾股定理可得,,在中,,即直線與平面所成線面角的正弦值為,命題④正確;對于命題⑤,在正方體中,平面,且,平面.、平面,,,所以,二面角的平面角為,在中,由勾股定理得,,由余弦定理得,命題⑤錯誤.故答案為①②④.【題目點撥】本題考查命題真假的判斷,考查空間中線線、線面、面面關(guān)系的判斷以及線面角、二面角的計算,判斷時要從空間中有關(guān)線線、線面、面面關(guān)系的平行或垂直的判定或性質(zhì)定理出發(fā)進(jìn)行推導(dǎo),在計算空間角時,則應(yīng)利用空間角的定義來求解,考查推理能力與運算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)把直接帶入,或者先化簡(2)化簡得,,根據(jù)求出的范圍即可解決.【題目詳解】(1)因為,,所以;(2)當(dāng)時,,所以,所以.【題目點撥】本題主要考查了三角函數(shù)的問題,對于三角函數(shù)需要記住??嫉囊恍┬再|(zhì):圖像、周期、最值、單調(diào)性、對稱軸等.屬于中等題.18、(1);(2).【解題分析】試題分析:(1)直接帶入求值;(2)將和直接帶入函數(shù),會得到和的值,然后根據(jù)的值.試題解析:解:(1)(2)考點:三角函數(shù)求值19、(1),.(2)【解題分析】

(1)利用降次公式和輔助角公式化簡表達(dá)式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得函數(shù)的單調(diào)減區(qū)間.(2)首先求得當(dāng)時的值域.利用換元法令,將轉(zhuǎn)化為,根據(jù)的范圍,結(jié)合二次函數(shù)的性質(zhì),求得的取值范圍.【題目詳解】(1)由()解得().所以所求函數(shù)的單調(diào)減區(qū)間是,.(2)當(dāng)時,,,即.令(),則關(guān)于的方程在上有解,即關(guān)于的方程在上有解.當(dāng)時,.所以,則.因此所求實數(shù)的取值范圍是.【題目點撥】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查根據(jù)方程的根存在求參數(shù)的取值范圍,考查二次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1)證明見解析(2)(3)存在,【解題分析】

(1)證明DG⊥AE,再根據(jù)面面垂直的性質(zhì)得出DG⊥平面ABCE即可證明(2)分別計算DG和梯形ABCE的面積,即可得出棱錐的體積;(3)過點C作CF∥AE交AB于點F,過點F作FP∥AD交DB于點P,連接PC,可證平面PCF∥平面ADE,故CP∥平面ADE,根據(jù)PF∥AD計算的值.【題目詳解】(1)證明:因為為中點,,所以.因為平面平面,平面平面,平面,所以平面.又因為平面,故(2)在直角三角形中,易求,則所以四棱錐的體積為(3)存在點,使得平面,且=3:4過點作交于點,則.過點作交于點,連接,則.又因為平面平面,所以平面.同理平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論