版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆福建省南平市邵武市第四中學(xué)數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.邊長為的正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,則直線與平面所成角的正弦值為()A. B. C. D.2.在中,角A,B,C所對的邊分別為a,b,c,若,,,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.無數(shù)多個3.過點斜率為-3的直線的一般式方程為()A. B.C. D.4.已知a,b,c為實數(shù),則下列結(jié)論正確的是()A.若ac>bc>0,則a>b B.若a>b>0,則ac>bcC.若ac2>bc2,則a>b D.若a>b,則ac2>bc25.某人射擊一次,設(shè)事件A:“擊中環(huán)數(shù)小于4”;事件B:“擊中環(huán)數(shù)大于4”;事件C:“擊中環(huán)數(shù)不小于4”;事件D:“擊中環(huán)數(shù)大于0且小于4”,則正確的關(guān)系是A.A和B為對立事件 B.B和C為互斥事件C.C與D是對立事件 D.B與D為互斥事件6.己知數(shù)列和的通項公式分別內(nèi),,若,則數(shù)列中最小項的值為()A. B.24 C.6 D.77.已知兩點,若點是圓上的動點,則面積的最大值為()A.13 B.3 C. D.8.設(shè)集合,,,則()A. B. C. D.9.在中,角所對的邊分別為,若的面積,則()A. B. C. D.10.在銳角中,內(nèi)角,,所對的邊分別為,,,若的面積為,且,則的周長的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),,則______.12.設(shè)是數(shù)列的前項和,且,,則__________.13.在中,角所對的邊為,若,且的外接圓半徑為,則________.14.設(shè)數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{}的前10項的和為__.15.若,且,則的最小值為_______.16.函數(shù)的反函數(shù)為____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中,側(cè)棱垂直于底面,,分別是的中點.(1)求證:平面;(2)求三棱錐的體積.18.在平面直角坐標(biāo)系中,為坐標(biāo)原點,已知向量,又點,,,.(1)若,且,求向量;(2)若向量與向量共線,常數(shù),求的值域.19.如圖,在四棱錐中,,底面為平行四邊形,平面.()求證:平面;()若,,,求三棱錐的體積;()設(shè)平面平面直線,試判斷與的位置關(guān)系,并證明.20.已知函數(shù),且函數(shù)是偶函數(shù),設(shè)(1)求的解析式;(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實數(shù)的取值范圍;(3)若方程有三個不同的實數(shù)根,求實數(shù)的取值范圍.21.已知四棱錐的底面是菱形,底面,是上的任意一點求證:平面平面設(shè),求點到平面的距離在的條件下,若,求與平面所成角的正切值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
在正方形中連接,交于點,根據(jù)正方形的性質(zhì),在折疊圖中平面,得到,從而平面,面平面,則是在平面上的射影,找到直線與平面所所成的角.然后在直角三角中求解.【題目詳解】如圖所示:在正方形中連接,交于點,在折疊圖,連接,因為,所以平面,所以,又因為,所以平面,又因為平面,所以平面,則是在平面上的射影,所以即為所求.因為故選:D【題目點撥】本題主要考查了折疊圖問題,還考查了推理論證和空間想象的能力,屬于中檔題.2、B【解題分析】
直接由正弦定理分析判斷得解.【題目詳解】由正弦定理得,所以C只有一解,所以三角形只有一解.故選:B【題目點撥】本題主要考查正弦定理的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.3、A【解題分析】
由點和斜率求出點斜式方程,化為一般式方程即可.【題目詳解】解:過點斜率為的直線方程為,化為一般式方程為;故選:.【題目點撥】本題考查了由點以及斜率求點斜式方程的問題,屬于基礎(chǔ)題.4、C【解題分析】
本題可根據(jù)不等式的性質(zhì)以及運用特殊值法進行代入排除即可得到正確結(jié)果.【題目詳解】由題意,可知:對于A中,可設(shè),很明顯滿足,但,所以選項A不正確;對于B中,因為不知道的正負(fù)情況,所以不能直接得出,所以選項B不正確;對于C中,因為,所以,所以,所以選項C正確;對于D中,若,則不能得到,所以選項D不正確.故選:C.【題目點撥】本題主要考查了不等式性質(zhì)的應(yīng)用以及特殊值法的應(yīng)用,著重考查了推理能力,屬于基礎(chǔ)題.5、D【解題分析】
根據(jù)互斥事件和對立事件的概念,進行判定,即可求解,得到答案.【題目詳解】由題意,A項中,事件“擊中環(huán)數(shù)等于4環(huán)”可能發(fā)生,所以事件A和B為不是對立事件;B項中,事件B和C可能同時發(fā)生,所以事件B和C不是互斥事件;C項中,事件“擊中環(huán)數(shù)等于0環(huán)”可能發(fā)生,所以事件C和D為不是對立事件;D項中,事件B:“擊中環(huán)數(shù)大于4”與事件D:“擊中環(huán)數(shù)大于0且小于4”,不可能同時發(fā)生,所以B與D為互斥事件,故選D.【題目點撥】本題主要考查了互斥事件和對立事件的概念及判定,其中解答中熟記互斥事件和對立事件的概念,準(zhǔn)確判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.6、D【解題分析】
根據(jù)兩個數(shù)列的單調(diào)性,可確定數(shù)列,也就確定了其中的最小項.【題目詳解】由已知數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,且計算后知,又,∴數(shù)列中最小項的值是1.故選D.【題目點撥】本題考查數(shù)列的單調(diào)性,數(shù)列的最值.解題時依據(jù)題意確定大小即可.本題難度一般.7、C【解題分析】
先求出直線方程,然后計算出圓心到直線的距離,根據(jù)面積的最大時,以及高最大的條件,可得結(jié)果.【題目詳解】由,利用直線的截距式所以直線方程為:即由圓,即所以圓心為,半徑為則圓心到直線的距離為要使面積的最大,則圓上的點到最大距離為所以面積的最大值為故選:C【題目點撥】本題考查圓與直線的幾何關(guān)系以及點到直線的距離,屬基礎(chǔ)題.8、A【解題分析】因為,所以,又因為,,故選A.9、B【解題分析】
利用面積公式及可求,再利用同角的三角函數(shù)的基本關(guān)系式可求,最后利用余弦定理可求的值.【題目詳解】因為,故,所以,因為,故,又,由余弦定理可得,故.故選B.【題目點撥】三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道其中的三個量(除三個角外),可以求得其余的四個量.(1)如果知道三邊或兩邊及其夾角,用余弦定理;(2)如果知道兩邊即一邊所對的角,用正弦定理(也可以用余弦定理求第三條邊);(3)如果知道兩角及一邊,用正弦定理.10、C【解題分析】
首先根據(jù)面積公式和余弦定理可將已知變形為,,然后根據(jù)正弦定理,將轉(zhuǎn)化為,利用,化簡為,再根據(jù)三角形是銳角三角形,得到的范圍,轉(zhuǎn)化為三角函數(shù)求取值范圍的問題.【題目詳解】因為的面積為,所以,所以,由余弦定理可得,則,即,所以.由正弦定理可得,所以.因為為銳角三角形,所以,所以,則,即.故的周長的取值范圍是.【題目點撥】本題考查了正余弦定理和三角形面積公式,以及輔助角公式和三角函數(shù)求取值范圍的問題,屬于中檔題型,本題需認(rèn)真審題,當(dāng)是銳角三角形時,需滿足三個角都是銳角,即.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由,根據(jù)兩角差的正切公式可解得.【題目詳解】,故答案為【題目點撥】本題主要考查了兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)知識的考查.12、【解題分析】原式為,整理為:,即,即數(shù)列是以-1為首項,-1為公差的等差的數(shù)列,所以,即.【題目點撥】這類型題使用的公式是,一般條件是,若是消,就需當(dāng)時構(gòu)造,兩式相減,再變形求解;若是消,就需在原式將變形為:,再利用遞推求解通項公式.13、或.【解題分析】
利用正弦定理求出的值,結(jié)合角的取值范圍得出角的值.【題目詳解】由正弦定理可得,所以,,,或,故答案為或.【題目點撥】本題考查正弦定理的應(yīng)用,在利用正弦值求角時,除了找出銳角還要注意相應(yīng)的補角是否滿足題意,考查計算能力,屬于基礎(chǔ)題.14、【解題分析】試題分析:∵數(shù)列滿足,且,∴當(dāng)時,.當(dāng)時,上式也成立,∴.∴.∴數(shù)列的前項的和.∴數(shù)列的前項的和為.故答案為.考點:(1)數(shù)列遞推式;(2)數(shù)列求和.15、【解題分析】
將變換為,展開利用均值不等式得到答案.【題目詳解】若,且,則時等號成立.故答案為【題目點撥】本題考查了均值不等式,“1”的代換是解題的關(guān)鍵.16、【解題分析】
首先求出在區(qū)間的值域,再由表示的含義,得到所求函數(shù)的反函數(shù).【題目詳解】因為,所以,.所以的反函數(shù)是.故答案為:【題目點撥】本題主要考查反函數(shù)定義,同時考查了三角函數(shù)的值域問題,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】試題分析:(1)做輔助線,先證及四邊形為平行四邊形平面;(2)利用勾股定理求得.試題解析:(1)證明:取中點,連接,則∵是的中點,∴;∵是的中點,∴,∴四邊形為平行四邊形,∴,∵平面,平面,∴平面;(2)∵,∴,∴18、(1)或;(2)當(dāng)時的值域為.時的值域為.【解題分析】分析:(1)由已知表示出向量,再根據(jù),且,建立方程組求出,即可求得向量;(2)由已知表示出向量,結(jié)合向量與向量共線,常數(shù),建立的表達(dá)式,代入,對分類討論,綜合三角函數(shù)和二次函數(shù)的圖象與性質(zhì),即可求出值域.詳解:(1),∵,且,∴,,解得,時,;時,.∴向量或.(2),∵向量與向量共線,常數(shù),∴,∴.①當(dāng)即時,當(dāng)時,取得最大值,時,取得最小值,此時函數(shù)的值域為.②當(dāng)即時,當(dāng)時,取得最大值,時,取得最小值,此時函數(shù)的值域為.綜上所述,當(dāng)時的值域為.時的值域為.點睛:本題考查了向量的坐標(biāo)運算、向量垂直和共線的定理、模的計算、三角函數(shù)的值域等問題,考查了分類討論方法、推理與計算能力.19、(1)證明見解析;(2);(3),證明見解析.【解題分析】
(1)根據(jù)題意得到,,面從而得到線線垂直;(2)由圖形特點得到面,代入數(shù)據(jù)可得到體積值;(3)證明平面,利用平面平面,可得..【題目詳解】()證明:∵面,面,∴,又∵,面,面,,∴面,()∵底面為平行四邊形,面,∴面,∴.().證明:∵底面為平行四邊形,∴,∵面,面,∴面,又∵面面,面,∴.20、(1);(2);(3).【解題分析】
(1)對稱軸為,對稱軸為,再根據(jù)圖像平移關(guān)系求解;(2)分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值;(3)令為整體,轉(zhuǎn)化為二次函數(shù)根的分布問題求解.【題目詳解】(1)函數(shù)的對稱軸為,因為向左平移1個單位得到,且是偶函數(shù),所以,所以.(2)即又,所以,則因為,所以實數(shù)的取值范圍是.(3)方程即化簡得令,則若方程有三個不同的實數(shù)根,則方程必須有兩個不相等的實數(shù)根,且或,令當(dāng)時,則,即,當(dāng)時,,,,舍去,綜上,實數(shù)的取值范圍是.【題目點撥】本題考查求函數(shù)解析式,函數(shù)不等式恒成立及函數(shù)零點問題.函數(shù)不等式恒成立通常采用參數(shù)分離法;函數(shù)零點問題要結(jié)合函數(shù)與方程的關(guān)系求解.21、(1)見解析(2)(3)【解題分析】
(1)由平面,得出,由菱形的性質(zhì)得出,利用直線與平面垂直的判定定理得出平面,再利用平面與平面垂直的判定定理可證出結(jié)論;(2)先計算出三棱錐的體積,并計算出的面積,利用等體積法計算出三棱錐的高,即為點到平面的距離;(3)由(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年證券市場情緒分析與投資策略咨詢合同3篇
- 二零二四年印刷品印刷合同范本:印刷品印刷協(xié)議9篇
- 2025年新能源汽車租賃與智能交通系統(tǒng)合作合同3篇
- 2025年度國際船舶租賃合同環(huán)境保護責(zé)任與履約評估3篇
- 二零二五版?zhèn)€人住房抵押貸款合同2篇
- 2025年度家具租賃服務(wù)合同標(biāo)準(zhǔn)文本4篇
- 2025年肉類加工企業(yè)鮮豬肉原料采購合同3篇
- 2025年度生態(tài)農(nóng)業(yè)園區(qū)商鋪租賃合同規(guī)范2篇
- 2024租賃公司設(shè)備租賃與購買合同
- 二零二五版高壓電纜敷設(shè)電力施工勞務(wù)合同范本2篇
- 期末綜合試卷(試題)2024-2025學(xué)年人教版數(shù)學(xué)五年級上冊(含答案)
- 2024ESC心房顫動管理指南解讀-第一部分
- 保定市縣級地圖PPT可編輯矢量行政區(qū)劃(河北省)
- 新蘇教版科學(xué)六年級下冊全冊教案(含反思)
- 供方注冊指南-ZTE
- 真心英雄合唱歌詞
- 旅游感知形象研究綜述 論文
- 如何提高辦文辦會辦事能力
- GB_T 37494-2019 糧油機械 軋坯機(高清版)
- 【校本教材】《身邊的化學(xué)》高中化學(xué)校本課程
- 產(chǎn)后訪視技術(shù)規(guī)范
評論
0/150
提交評論