版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
福建省廈門市翔安一中2024屆高一數(shù)學第二學期期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,若與的夾角為,則()A.2 B. C. D.12.平行四邊形中,若點滿足,,設,則()A. B. C. D.3.設長方體的長、寬、高分別為2,1,1,其頂點都在同一個球面上,則該球的表面積為()A. B. C. D.4.若函數(shù)和在區(qū)間D上都是增函數(shù),則區(qū)間D可以是()A. B. C. D.5.在中,角所對的邊分別為,已知下列條件,只有一個解的是()A.,, B.,,C.,, D.,,6.將函數(shù)的圖象向左平移個單位長度,再將圖象上每個點的橫坐標變?yōu)樵瓉淼模v坐標不變),得到函數(shù)的圖象.若函數(shù)在區(qū)間上有且僅有兩個零點,則的取值范圍為()A. B. C. D.7.函數(shù)的最大值為A.4 B.5 C.6 D.78.對數(shù)列,若區(qū)間滿足下列條件:①;②,則稱為區(qū)間套.下列選項中,可以構(gòu)成區(qū)間套的數(shù)列是()A.;B.C.D.9.已知x,y為正實數(shù),則()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx?2lgyC.2lgx?lgy=2lgx+2lgy D.2lg(xy)=2lgx?2lgy10.如圖,平行四邊形的對角線相交于點,是的中點,的延長線與相交于點,若,,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知三個頂點的坐標分別為,若⊥,則的值是______.12.已知數(shù)列為等比數(shù)列,,,則數(shù)列的公比為__________.13.如圖,已知扇形和,為的中點.若扇形的面積為1,則扇形的面積為______.14.在中,,,為角,,所對的邊,點為的重心,若,則的取值范圍為______.15.函數(shù)的定義域為_______.16.在正數(shù)數(shù)列an中,a1=1,且點an,an-1三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)求證:(2)請利用(1)的結(jié)論證明:(3)請你把(2)的結(jié)論推到更一般的情形,使之成為推廣后的特例,并加以證明:(4)化簡:.18.已知函數(shù).(1)判斷函數(shù)奇偶性;(2)討論函數(shù)的單調(diào)性;(3)比較與的大小.19.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求內(nèi)角B的大??;(2)設,,的最大值為5,求k的值.20.某建筑公司用8000萬元購得一塊空地,計劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計得知,如果將樓房建為x(x≥12)層,則每平方米的平均建筑費用為Q(x)=3000+50x(單位:元).(1)求樓房每平方米的平均綜合費用f(x)的解析式.(2)為了使樓房每平方米的平均綜合費用最少,該樓房應建為多少層?每平方米的平均綜合費用最小值是多少?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)21.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
先計算與的模,再根據(jù)向量數(shù)量積的性質(zhì)即可計算求值.【題目詳解】因為,,所以,.又,所以,故選B.【題目點撥】本題主要考查了向量的坐標運算,向量的數(shù)量積,向量的模的計算,屬于中檔題.2、B【解題分析】
畫出平行四邊形,在上取點,使得,在上取點,使得,由圖中幾何關系可得到,即可求出的值,進而可以得到答案.【題目詳解】畫出平行四邊形,在上取點,使得,在上取點,使得,則,故,,則.【題目點撥】本題考查了平面向量的線性運算,考查了平面向量基本定理的應用,考查了平行四邊形的性質(zhì),屬于中檔題.3、B【解題分析】
先求出長方體的對角線的長度,即得外接球的直徑,再求球的表面積得解.【題目詳解】由題得長方體外接球的直徑.故選:B【題目點撥】本題主要考查長方體的外接球的表面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.4、D【解題分析】
依次判斷每個選項,排除錯誤選項得到答案.【題目詳解】時,單調(diào)遞減,A錯誤時,單調(diào)遞減,B錯誤時,單調(diào)遞減,C錯誤時,函數(shù)和都是增函數(shù),D正確故答案選D【題目點撥】本題考查了三角函數(shù)的單調(diào)性,意在考查學生對于三角函數(shù)性質(zhì)的理解應用,也可以通過圖像得到答案.5、D【解題分析】
首先根據(jù)正弦定理得到,比較與的大小關系即可判定A,B錯誤,再根據(jù)大邊對大角即可判定C錯誤,根據(jù)勾股定理即可判定D正確.【題目詳解】對于A,因為,,所以,有兩個解,故A錯誤.對于B,因為,,所以,無解,故B錯誤.對于C,因為,所以,即,,所以無解,故C錯誤.對于D,,為直角三角形,故D正確.故選:D【題目點撥】本題主要考查三角形個數(shù)的判斷,利用正弦定理判斷為解題的關鍵,屬于簡單題.6、C【解題分析】
寫出變換后的函數(shù)解析式,,,結(jié)合正弦函數(shù)圖象可分析得:要使函數(shù)有且僅有兩個零點,只需,即可得解.【題目詳解】由題,根據(jù)變換關系可得:,函數(shù)在區(qū)間上有且僅有兩個零點,,,根據(jù)正弦函數(shù)圖象可得:,解得:.故選:C【題目點撥】此題考查函數(shù)圖象的平移和伸縮變換,根據(jù)函數(shù)零點個數(shù)求參數(shù)的取值范圍.7、B【解題分析】試題分析:因為,而,所以當時,取得最大值5,選B.【考點】正弦函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)【名師點睛】求解本題易出現(xiàn)的錯誤是認為當時,函數(shù)取得最大值.8、C【解題分析】由題意,得為遞增數(shù)列,為遞減數(shù)列,且當時,;而與與均為遞減數(shù)列,所以排除A,B,D,故選C.考點:新定義題目.9、D【解題分析】因為as+t=as?at,lg(xy)=lgx+lgy(x,y為正實數(shù)),所以2lg(xy)=2lgx+lgy=2lgx?2lgy,滿足上述兩個公式,故選D.10、B【解題分析】
先根據(jù)勾股定理判斷為直角三角形,且,,再根據(jù)三角形相似可得,然后由向量的加減的幾何意義以及向量的數(shù)量積公式計算即可.【題目詳解】,,,,為直角三角形,且,,平行行四邊形的對角線相交于點,是的中點,,,,,故選B.【題目點撥】本題主要考查向量的加減的幾何意義以及向量的數(shù)量積公式的應用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
求出,再利用,求得.【題目詳解】,因為⊥,所以,解得:.【題目點撥】本題考查向量的坐標表示、數(shù)量積運算,要注意向量坐標與點坐標的區(qū)別.12、【解題分析】
設等比數(shù)列的公比為,由可求出的值.【題目詳解】設等比數(shù)列的公比為,則,,因此,數(shù)列的公比為,故答案為:.【題目點撥】本題考查等比數(shù)列公比的計算,在等比數(shù)列的問題中,通常將數(shù)列中的項用首項和公比表示,建立方程組來求解,考查運算求解能力,屬于基礎題.13、1【解題分析】
設,在扇形中,利用扇形的面積公式可求,根據(jù)已知,在扇形中,利用扇形的面積公式即可計算得解.【題目詳解】解:設,扇形的面積為1,即:,解得:,為的中點,,在扇形中,.故答案為:1.【題目點撥】本題主要考查了扇形的面積公式的應用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于基礎題.14、【解題分析】
在中,延長交于,由重心的性質(zhì),找到、和的關系,在和中利用余弦定理分別表示出和,求出,再利用余弦定理表示出,利用基本不等式和的范圍求解即可.【題目詳解】畫出,連接,并延長交于,因為是的重心,所以為中點,因為,所以,由重心的性質(zhì),,在中,由余弦定理得,,在中,由余弦定理得,因為,所以,又,所以,在中,由余弦定理和基本不等式,,又,所以,故.故答案為:【題目點撥】本題主要考查三角形重心的性質(zhì)、余弦定理解三角形和基本不等式求最值,考查學生的分析轉(zhuǎn)化能力,屬于中檔題.15、【解題分析】
由二次根式有意義,得:,然后利用指數(shù)函數(shù)的單調(diào)性即可得到結(jié)果.【題目詳解】由二次根式有意義,得:,即,因為在R上是增函數(shù),所以,x≤2,即定義域為:【題目點撥】本題主要考查函數(shù)定義域的求法以及指數(shù)不等式的解法,要求熟練掌握常見函數(shù)成立的條件,比較基礎.16、2【解題分析】
在正數(shù)數(shù)列an中,由點an,an-1在直線x-2y=0上,知a【題目詳解】由題意,在正數(shù)數(shù)列an中,a1=1,且a可得an-2即an因為a1=1,所以數(shù)列所以Sn故答案為2n【題目點撥】本題主要考查了等比數(shù)列的定義,以及等比數(shù)列的前n項和公式的應用,同時涉及到數(shù)列與解析幾何的綜合運用,是一道好題.解題時要認真審題,仔細解答,注意等比數(shù)列的前n項和公式和通項公式的靈活運用,著重考查了推理與運算能力,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)證明見解析,(3),證明見解析(4)【解題分析】
(1)右邊余切化正切后,利用二倍角的正切公式變形可證;(2)將(1)的結(jié)果變形為,然后將所證等式的右邊的正切化為余切即可得證;(3)根據(jù)(1)(2)的規(guī)律可得結(jié)果;(4)由(3)的結(jié)果可得.【題目詳解】(1)證明:因為,所以(2)因為,所以,所以(3)一般地:,證明:因為所以,以此類推得(4).【題目點撥】本題考查了歸納推理,考查了同角公式,考查了二倍角的正切公式,屬于中檔題.18、(1)是偶函數(shù)(2)見解析(3)【解題分析】
(1)由奇偶函數(shù)的定義判斷;(2)由單調(diào)性的定義證明;(3)由于函數(shù)為偶函數(shù),因此只要比較與的大小,因此先確定與的大小,這就得到分類標準.【題目詳解】(1)是偶函數(shù)(2)當時,是增函數(shù);當時,是減函數(shù);先證明當時,是增函數(shù)證明:任取,且,則,且,,即:當時,是增函數(shù)∵是偶函數(shù),∴當時,是減函數(shù).(3)要比較與的大小,∵是偶函數(shù),∴只要比較與大小即可.當時,即時,∵當時,是增函數(shù),∴當時,即當時,∵當時,是增函數(shù),∴【題目點撥】本題考查函數(shù)的奇偶性與單調(diào)性,掌握奇偶性與單調(diào)性的定義是解題基礎.19、(1),(2)【解題分析】
解:(1)(3分)又在中,,所以,則………(5分)(2),.………………(8分)又,所以,所以.所以當時,的最大值為.………(10分)………(12分)20、(1);(2)該樓房應建為20層,每平方米的平均綜合費用最小值為5000元.【解題分析】【試題分析】先建立樓房每平方米的平均綜合費用函數(shù),再應基本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級數(shù)學上冊第五單元倍的認識第1課時倍的認識教案新人教版
- 三年級科學下冊四植物和我們1植物和我們的生活教案新人教版
- 員工培訓課件服從
- 禮儀常識培訓課件
- 面部手法培訓課件
- 《水環(huán)境公共政策》課件
- 年滿六十周歲以上的老年人申請輕型牽引掛車(C6)需考的三力測試題附答案
- 《彈性波的相互作用》課件
- 2021年數(shù)據(jù)庫基礎與應用形成作業(yè)答案
- 《建設工程法規(guī)及相關知識》試題及答案
- 氨堿法純堿生產(chǎn)工藝概述
- 基礎化工行業(yè)深度:電解液新型鋰鹽材料之雙氟磺酰亞胺鋰(LiFSI)市場潛力可觀新型鋰鹽LiFSI國產(chǎn)化進程加速
- 年產(chǎn)10000噸一次性自然降解環(huán)保紙漿模塑餐具自動化生產(chǎn)線技改項目環(huán)境影響報告表
- 實戰(zhàn)銷售培訓講座(共98頁).ppt
- 測控電路第7章信號細分與辨向電路
- 哈爾濱工業(yè)大學信紙模版
- 氨的飽和蒸汽壓表
- 指揮中心大廳及機房裝修施工組織方案
- 餐飲店應聘人員面試測評表
- APQP全套表格最新版(共98頁)
- 六年級上冊數(shù)學試題-天津河西區(qū)2018-2019學年度期末考試人教新課標含答案
評論
0/150
提交評論