浙江省海曙區(qū)五校聯(lián)考2023年數(shù)學九上期末檢測試題含解析_第1頁
浙江省海曙區(qū)五校聯(lián)考2023年數(shù)學九上期末檢測試題含解析_第2頁
浙江省海曙區(qū)五校聯(lián)考2023年數(shù)學九上期末檢測試題含解析_第3頁
浙江省海曙區(qū)五校聯(lián)考2023年數(shù)學九上期末檢測試題含解析_第4頁
浙江省海曙區(qū)五校聯(lián)考2023年數(shù)學九上期末檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省海曙區(qū)五校聯(lián)考2023年數(shù)學九上期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.2.若,則正比例函數(shù)與反比例函數(shù)在同一坐標系中的大致圖象可能是()A. B. C. D.3.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數(shù)法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1054.從一副完整的撲克牌中任意抽取1張,下列事件與抽到“”的概率相同的是()A.抽到“大王” B.抽到“2” C.抽到“小王” D.抽到“紅桃”5.在平面直角坐標系中,二次函數(shù)的圖像向右平移2個單位后的函數(shù)為()A. B.C. D.6.拋物線向右平移4個單位長度后與拋物線重合,若(-1,3)在拋物線上,則下列點中,一定在拋物線上的是()A.(3,3) B.(3,-1) C.(-1,7) D.(-5,3)7.將一副學生常用的三角板如下圖擺放在一起,組成一個四邊形,連接,則的值為()A. B. C. D.8.如圖,所示的計算程序中,y與x之間的函數(shù)關系對應的圖象所在的象限是()A.第一象限 B.第一、三象限 C.第二、四象限 D.第一、四象限9.如圖,菱形ABCD中,EF⊥AC,垂足為點H,分別交AD、AB及CB的延長線交于點E、M、F,且AE:FB=1:2,則AH:AC的值為()A. B. C. D.10.若三角形的兩邊長分別是4和6,第三邊的長是方程x2-5x+6=0的一個根,則這個三角形的周長是()A.13 B.16 C.12或13 D.11或1611.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.412.如圖,點A,B,C在⊙O上,∠A=36°,∠C=28°,則∠B=()A.100° B.72° C.64° D.36°二、填空題(每題4分,共24分)13.在中,若、滿足,則為________三角形.14.二次函數(shù)圖象的對稱軸是______________.15.一枚質地均勻的骰子,六個面分別標有數(shù)字1,2,3,4,5,6,拋擲一次,恰好出現(xiàn)“正面朝上的數(shù)字是5”的概率是___________.16.已知=,則的值是_______.17.在國慶節(jié)的一次同學聚會上,每人都向其他人贈送了一份小禮品,共互送110份小禮品,則參加聚會的有______名同學.18.如圖,現(xiàn)有測試距離為5m的一張視力表,表上一個E的高AB為2cm,要制作測試距離為3m的視力表,其對應位置的E的高CD為____cm.三、解答題(共78分)19.(8分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.(1)求m的值和反比例函數(shù)的表達式;(2)直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?20.(8分)超速行駛是引發(fā)交通事故的主要原因.上周末,小明和三位同學嘗試用自己所學的知識檢測車速,如圖,觀測點設在到縣城城南大道的距離為米的點處.這時,一輛出租車由西向東勻速行駛,測得此車從處行駛到處所用的時間為秒,且,.求、之間的路程;請判斷此出租車是否超過了城南大道每小時千米的限制速度?21.(8分)已知矩形的周長為1.(1)當該矩形的面積為200時,求它的邊長;(2)請表示出這個矩形的面積與其一邊長的關系,并求出當矩形面積取得最大值時,矩形的邊長.22.(10分)如圖所示,是某路燈在鉛垂面內的示意圖,燈柱的高為10米,燈柱與燈桿的夾角為.路燈采用錐形燈罩,在地面上的照射區(qū)域的長為13.3米,從,兩處測得路燈的仰角分別為和,且.求燈桿的長度.23.(10分)如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB、連接DO并延長交CB的延長線于點E(1)判斷直線CD與⊙O的位置關系,并說明理由;(2)若BE=4,DE=8,求AC的長.24.(10分)如圖,已知∠BAC=30°,把△ABC繞著點A順時針旋轉到△ADE的位置,使得點D,A,C在同一直線上.(1)△ABC旋轉了多少度?(2)連接CE,試判斷△AEC的形狀;(3)求∠AEC的度數(shù).25.(12分)如圖,于點,為等腰直角三角形,,當繞點旋轉時,記.(1)過點作交射線于點,作射線交射線于點.①依題意補全圖形,求的度數(shù);②當時,求的長.(2)若上存在一點,且,作射線交射線于點,直接寫出長度的最大值.26.(1)如圖①,在△ABC中,AB=m,AC=n(n>m),點P在邊AC上.當AP=時,△APB∽△ABC;(2)如圖②,已知△DEF(DE>DF),請用直尺和圓規(guī)在直線DF上求作一點Q,使DE是線段DF和DQ的比例項.(保留作圖痕跡,不寫作法)

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義逐項進行判斷即可.【詳解】A、是中心對稱圖形,但不是軸對稱圖形,故不符合題意;B、是軸對稱圖形,但不是中心對稱圖形,故不符合題意;C、既是中心對稱圖形,又是軸對稱圖形,符合題意;D、既不是中心對稱圖形,也不是軸對稱圖形,故不符合題意.故選:C.【點睛】本題考查中心對稱圖形和軸對稱圖形的定義,熟練掌握定義是關鍵.2、B【分析】根據(jù)ab<0及正比例函數(shù)與反比例函數(shù)圖象的特點,可以從a>0,b<0和a<0,b>0兩方面分類討論得出答案.【詳解】解:∵ab<0,∴分兩種情況:(1)當a>0,b<0時,正比例函數(shù)的圖象過原點、第一、三象限,反比例函數(shù)圖象在第二、四象限,無此選項;(2)當a<0,b>0時,正比例函數(shù)的圖象過原點、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項B符合.故選:B.【點睛】本題主要考查了反比例函數(shù)的圖象性質和正比例函數(shù)的圖象性質,要掌握它們的性質才能靈活解題.3、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數(shù)法—表示較大的數(shù).4、B【分析】根據(jù)撲克牌的張數(shù),利用概率=頻數(shù)除以總數(shù)即可解題.【詳解】解:撲克牌一共有54張,所以抽到“”的概率是,A.抽到“大王”的概率是,B.抽到“2”的概率是,C.抽到“小王”的概率是,D.抽到“紅桃”的概率是,故選B.【點睛】本題考查了概率的實際應用,屬于簡單題,熟悉概率的計算方法是解題關鍵.5、B【分析】根據(jù)“左加右減,上加下減”的規(guī)律,求出平移后的函數(shù)表達式即可;【詳解】解:根據(jù)“左加右減,上加下減”得,二次函數(shù)的圖像向右平移2個單位為:;故選B.【點睛】本題主要考查了二次函數(shù)與幾何變換,掌握二次函數(shù)與幾何變換是解題的關鍵.6、A【分析】利用點的平移進行解答即可.【詳解】解:∵拋物線向右平移4個單位長度后與拋物線重合∴將(-1,3)向右平移4個單位長度的點在拋物線上∴(3,3)在拋物線上故選:A【點睛】本題考查了點的平移與函數(shù)平移規(guī)律,掌握點的規(guī)律是解題的關鍵.7、B【分析】設AC、BD交于點E,過點C作CF⊥BD于點F,過點E作EG⊥CD于點G,則CF∥AB,△CDF和△DEG都是等腰直角三角形,設AB=2,則易求出CF=,由△CEF∽△AEB,可得,于是設EF=,則,然后利用等腰直角三角形的性質可依次用x的代數(shù)式表示出CF、CD、DE、DG、EG的長,進而可得CG的長,然后利用正切的定義計算即得答案.【詳解】解:設AC、BD交于點E,過點C作CF⊥BD于點F,過點E作EG⊥CD于點G,則CF∥AB,△CDF和△DEG都是等腰直角三角形,∴△CEF∽△AEB,設AB=2,∵∠ADB=30°,∴BD=,∵∠BDC=∠CBD=45°,CF⊥BD,∴CF=DF=BF==,∴,設EF=,則,∴,∴,,∴,∴,∴.故選:B.【點睛】本題以學生常見的三角板為載體,考查了銳角三角函數(shù)和特殊角的三角函數(shù)值、30°角的直角三角形的性質、等腰三角形的性質等知識,構圖簡潔,但有相當?shù)碾y度,正確添加輔助線、熟練掌握等腰直角三角形的性質和銳角三角函數(shù)的知識是解題的關鍵.8、C【分析】根據(jù)輸入程序,求得y與x之間的函數(shù)關系是y=-,由其性質判斷所在的象限.【詳解】解:x的倒數(shù)乘以-5為-,即y=-,則函數(shù)過第二、四象限,故選C.【點睛】對于反比例函數(shù)y=(k≠0),(1)k>0,反比例函數(shù)圖象在一、三象限;(2)k<0,反比例函數(shù)圖象在第二、四象限內.9、B【分析】連接BD,如圖,利用菱形的性質得AC⊥BD,AD=BC,AD∥BC,再證明EF∥BD,接著判斷四邊形BDEF為平行四邊形得到DE=BF,設AE=x,F(xiàn)B=DE=2x,BC=3x,所以AE:CF=1:5,然后證明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性質得到AH:AC的值.【詳解】解:連接BD,如圖,∵四邊形ABCD為菱形,∴AC⊥BD,AD=BC,AD∥BC,∵EF⊥AC,∴EF∥BD,而DE∥BF,∴四邊形BDEF為平行四邊形,∴DE=BF,由AE:FB=1:2,設AE=x,F(xiàn)B=DE=2x,BC=3x,∴AE:CF=x:5x=1:5,∵AE∥CF,∴△AEH∽△CFH,∴AH:HC=AE:CF=1:5,∴AH:AC=1:1.故選:B.【點睛】此題主要考查相似三角形的判定與性質,解題的關鍵是熟知菱形的性質及相似三角形的性質.10、A【分析】首先利用因式分解法求得一元二次方程x2-5x+6=0的兩個根,又由三角形的兩邊長分別是4和6,利用三角形的三邊關系,即可確定這個三角形的第三邊長,然后求得周長即可.【詳解】∵x2-5x+6=0,

∴(x-3)(x-2)=0,

解得:x1=3,x2=2,

∵三角形的兩邊長分別是4和6,

當x=3時,3+4>6,能組成三角形;

當x=2時,2+4=6,不能組成三角形.

∴這個三角形的第三邊長是3,

∴這個三角形的周長為:4+6+3=13.

故選A.【點睛】此題考查了因式分解法解一元二次方程與三角形三邊關系的知識.此題難度不大,解題的關鍵是注意準確應用因式分解法解一元二次方程,注意分類討論思想的應用.11、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉;2.勾股定理.12、C【詳解】試題分析:設AC和OB交于點D,根據(jù)同弧所對的圓心角的度數(shù)等于圓周角度數(shù)2倍可得:∠O=2∠A=72°,根據(jù)∠C=28°可得:∠ODC=80°,則∠ADB=80°,則∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本題選C.二、填空題(每題4分,共24分)13、直角【分析】先根據(jù)非負數(shù)的性質及特殊角的三角函數(shù)值求得∠A和∠B,即可作出判斷.【詳解】∵,∴,,∴,,∵,,∴∠A=30°,∠B=60°,

∴,

∴△ABC是直角三角形.

故答案為:直角.【點睛】本題考查了特殊角的三角函數(shù)值,非負數(shù)的性質及三角形的內角和定理,根據(jù)非負數(shù)的性質及特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),是解題的關鍵.14、直線【分析】根據(jù)二次函數(shù)的頂點式直接得出對稱軸.【詳解】二次函數(shù)圖象的對稱軸是x=1.故答案為:直線x=1【點睛】本題考查的是根據(jù)二次函數(shù)的頂點式求對稱軸.15、【分析】“正面朝上的數(shù)字是5”的情況數(shù)除以總情況數(shù)6即為所求的概率.【詳解】解:∵拋擲六個面上分別標有數(shù)字1,2,3,4,5,6的骰子共有6種結果,其中“正面朝上的數(shù)字是5”的只有1種,

∴“正面朝上的數(shù)字是5”的概率為,

故答案為:.【點睛】此題主要考查了概率公式的應用,概率等于所求情況數(shù)與總情況數(shù)之比.16、【分析】根據(jù)合比性質:,可得答案.【詳解】由合比性質,得,

故答案為:.【點睛】此題考查比例的性質,利用合比性質是解題關鍵.17、1【解析】設參加聚會的有x名學生,根據(jù)“在國慶節(jié)的一次同學聚會上,每人都向其他人贈送了一份小禮品,共互送10份小禮品”,列出關于x的一元二次方程,解之即可.【詳解】解:設參加聚會的有x名學生,根據(jù)題意得:,解得:,舍去,即參加聚會的有1名同學,故答案為:1.【點睛】本題考查了一元二次方程的應用,正確找出等量關系,列出一元二次方程是解題的關鍵.18、1.1【分析】證明△OCD∽△OAB,然后利用相似比計算出CD即可.【詳解】解:OB=5m,OD=3m,AB=1cm,∵CD∥AB,∴△OCD∽△OAB,∴,即,∴CD=1.1,即對應位置的E的高CD為1.1cm.故答案為1.1.【點睛】本題考查了相似三角形的應用:常常構造“A”型或“X”型相似圖,利用三角形相似的性質求相應線段的長.三、解答題(共78分)19、(1)m=8,反比例函數(shù)的表達式為y=;(2)當n=3時,△BMN的面積最大.【解析】(1)求出點A的坐標,利用待定系數(shù)法即可解決問題;(2)構造二次函數(shù),利用二次函數(shù)的性質即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點M,N的坐標為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.20、(米);此車超過了每小時千米的限制速度.【分析】(1)利用三角函數(shù)在兩個直角三角形中分別計算出BO、AO的長,即可算出AB的長;(2)利用路程÷時間=速度,計算出出租車的速度,再把60千米/時化為米/秒,再進行比較即可.【詳解】由題意知:米,,,在直角三角形中,∵,∴米,在直角三角形中,∵,∴米,∴(米);∵從處行駛到處所用的時間為秒,∴速度為米/秒,∵千米/時米/秒,而,∴此車超過了每小時千米的限制速度.【點睛】此題是解直角三角形的應用,主要考查了銳角三角函數(shù),從復雜的實際問題中整理出直角三角形并求解是解決此類題目的關鍵.21、(1)矩形的邊長為10和2;(2)這個矩形的面積S與其一邊長x的關系式是S=-x2+30x;當矩形的面積取得最大值時,矩形是邊長為15的正方形.【分析】(1)設矩形的一邊長為,則矩形的另一邊長為,根據(jù)矩形的面積為20列出相應的方程,從而可以求得矩形的邊長;

(2)根據(jù)題意可以得到矩形的面積與一邊長的函數(shù)關系,然后根據(jù)二次函數(shù)的性質可以求得矩形的最大面積,并求出矩形面積最大時它的邊長.【詳解】解:(1)設矩形的一邊長為,則矩形的另一邊長為,根據(jù)題意,得,解得,.答:矩形的邊長為10和2.(2)設矩形的一邊長為,面積為S,根據(jù)題意可得,,所以,當矩形的面積最大時,.答:這個矩形的面積與其一邊長的關系式是S=-x2+30x,當矩形面積取得最大值時,矩形是邊長為15的正方形.【點睛】本題考查二次函數(shù)的應用、一元二次方程的應用,解答本題的關鍵是明確題意,列出相應的方程以及函數(shù)關系式,利用二次函數(shù)的性質解答.22、2.8米【分析】過點作,交于點,過點作,交于點,則米.設.根據(jù)正切函數(shù)關系得,可進一步求解.【詳解】解:由題意得,.過點作,交于點,過點作,交于點,則米.設.,.在中,,.,..(米).,.(米).答:燈桿的長度為2.8米.【點睛】考核知識點:解直角三角形應用.構造直角三角形,利用直角三角形性質求解是關鍵.23、(1)相切,證明見解析;(2)6.【分析】(1)欲證明CD是切線,只要證明OD⊥CD,利用全等三角形的性質即可證明;(2)設⊙O的半徑為r.在Rt△OBE中,根據(jù)OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=,推出,可得CD=BC=6,再利用勾股定理即可解決問題.【詳解】解:(1)相切,理由如下,如圖,連接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切線;(2)設⊙O的半徑為r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan∠E=,∴,∴CD=BC=6,在Rt△ABC中,AC=.【點睛】本題考查直線與圓的位置關系、圓周角定理、勾股定理、銳角三角函數(shù)等知識,正確添加輔助線,熟練掌握和靈活應用相關知識解決問題是關鍵.24、(1)150°;(2)詳見解析;(3)15°【分析】(1)根據(jù)旋轉的性質,利用補角性質即可解題;(2)根據(jù)旋轉后的對應邊相等即可解題;(3)利用外角性質即可解題.【詳解】解:(1)∵點D,A,C在同一直線上,∴∠BAD=180°-∠BAC=180°-30°=150°,∴△ABC旋轉了150°;(2)根據(jù)旋轉的性質,可知AC=AE,∴△AEC是等腰三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論