版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省仁壽一中南校區(qū)2023年數(shù)學(xué)高一上期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)為上偶函數(shù),且在上的單調(diào)遞增,若,則滿足的的取值范圍是()A. B.C. D.2.不論a取何正實數(shù),函數(shù)恒過點()A. B.C. D.3.函數(shù)部分圖象如圖所示,則下列結(jié)論錯誤的是()A.頻率為 B.周期為C.振幅為2 D.初相為4.納皮爾是蘇格蘭數(shù)學(xué)家,其主要成果有球面三角中納皮爾比擬式、納皮爾圓部法則(1614)和納皮爾算籌(1617),而最大的貢獻(xiàn)是對數(shù)的發(fā)明,著有《奇妙的對數(shù)定律說明書》,并且發(fā)明了對數(shù)尺,可以利用對數(shù)尺查詢出任意一對數(shù)值.現(xiàn)將物體放在空氣中冷卻,如果物體原來的溫度是(℃),空氣的溫度是(℃),經(jīng)過t分鐘后物體的溫度T(℃)可由公式得出,如溫度為90℃的物體,放在空氣中冷卻2.5236分鐘后,物體的溫度是50℃,若根據(jù)對數(shù)尺可以查詢出,則空氣溫度是()A.5℃ B.10℃C.15℃ D.20℃5.已知函數(shù),且f(5a﹣2)>﹣f(a﹣2),則a的取值范圍是()A.(0,+∞) B.(﹣∞,0)C. D.6.已知命題,,則為()A., B.,C., D.,7.已知函數(shù)則其在區(qū)間上的大致圖象是()A. B.C. D.8.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°9.為了得到函數(shù)圖象,只需將函數(shù)的圖象A.向左平行移動個單位 B.向左平行移動個單位C.向右平行移動個單位 D.向右平行移動個單位10.函數(shù),其部分圖象如圖所示,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若“”是“”的必要不充分條件,則實數(shù)的取值范圍為___________.12.在正方體ABCD-A1B1C1D1中,E、F是分別是棱A1B1、A1D1的中點,則A1B與EF所成角的大小為______13.已知扇形弧長為20cm,圓心角為,則該扇形的面積為___________.14.如圖,若集合,,則圖中陰影部分表示的集合為___15.某掛鐘秒針的端點A到中心點的距離為,秒針均勻地繞點旋轉(zhuǎn),當(dāng)時間時,點A與鐘面上標(biāo)12的點重合,A與兩點距離地面的高度差與存在函數(shù)關(guān)系式,則解析式___________,其中,一圈內(nèi)A與兩點距離地面的高度差不低于的時長為___________.16.若兩個正實數(shù),滿足,且不等式恒成立,則實數(shù)的取值范圍是__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知直線l1過點A(1,0),B(3,a-1),直線l2過點M(1,2),N(a+2,4)(1)若l1∥l2,求a的值;(2)若l1⊥l2,求a的值18.已知函數(shù)(1)求的值(2)求函數(shù)的最小正周期及其圖像的對稱軸方程(3)對于任意,均有成立,求實數(shù)的取值范圍19.已知函數(shù)(1)求函數(shù)的最小正周期;(2)將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,若關(guān)于的方程在上有2個不等的實數(shù)解,求實數(shù)的取值范圍20.已知函數(shù),(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并說明理由;(3)如果,求x的取值范圍.21.某種有獎銷售的飲料,瓶蓋內(nèi)印有“獎勵一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎勵一瓶”字樣即為中獎,中獎概率為.甲、乙、丙三位同學(xué)每人購買了一瓶該飲料(Ⅰ)求三位同學(xué)都沒有中獎的概率;(Ⅱ)求三位同學(xué)中至少有兩位沒有中獎的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性解函數(shù)不等式【詳解】是偶函數(shù),.所以不等式化為,又在上遞增,所以,或,即或故選:B2、A【解析】令指數(shù)為0,即可求得函數(shù)恒過點【詳解】令x+1=0,可得x=-1,則∴不論取何正實數(shù),函數(shù)恒過點(-1,-1)故選A【點睛】本題考查指數(shù)函數(shù)的性質(zhì),考查函數(shù)恒過定點,屬于基礎(chǔ)題3、A【解析】根據(jù)圖象可得、,然后利用求出即可.【詳解】由圖可知,C正確;,則,,B正確;,A錯誤;因為,則,即,又,則,D正確故選:A4、B【解析】依題意可得,即,即可得到方程,解得即可;【詳解】:依題意,即,又,所以,即,解得;故選:B5、D【解析】由定義可求函數(shù)的奇偶性,進(jìn)而將所求不等式轉(zhuǎn)化為f(5a﹣2)>f(﹣a+2),結(jié)合函數(shù)的單調(diào)性可得關(guān)于a的不等式,從而可求出a的取值范圍.【詳解】解:根據(jù)題意,函數(shù),其定義域為R,又由f(﹣x)f(x),f(x)為奇函數(shù),又,函數(shù)y=9x+1為增函數(shù),則f(x)在R上單調(diào)遞增;f(5a﹣2)>﹣f(a﹣2)?f(5a﹣2)>f(﹣a+2)?5a﹣2>﹣a+2,解可得,故選:D.【點睛】關(guān)鍵點睛:本題的關(guān)鍵是由奇偶性轉(zhuǎn)化已知不等式,再求出函數(shù)單調(diào)性求出關(guān)于a的不等式.6、A【解析】特稱命題的否定為全稱命題,所以,存在性量詞改為全稱量詞,結(jié)論直接改否定即可.【詳解】命題,,則:,答案選A【點睛】本題考查命題的否定,屬于簡單題.7、D【解析】為奇函數(shù),去掉A,B;當(dāng)時,所以選D.點睛:(1)運用函數(shù)性質(zhì)研究函數(shù)圖像時,先要正確理解和把握函數(shù)相關(guān)性質(zhì)本身的含義及其應(yīng)用方向.(2)在運用函數(shù)性質(zhì)特別是奇偶性、周期、對稱性、單調(diào)性、最值、零點時,要注意用好其與條件的相互關(guān)系,結(jié)合特征進(jìn)行等價轉(zhuǎn)化研究.如奇偶性可實現(xiàn)自變量正負(fù)轉(zhuǎn)化,周期可實現(xiàn)自變量大小轉(zhuǎn)化,單調(diào)性可實現(xiàn)去,即將函數(shù)值的大小轉(zhuǎn)化自變量大小關(guān)系8、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A9、B【解析】由函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論【詳解】∵將函數(shù)y=sin(2x)的圖象向左平行移動個單位得到sin[2(x)]=,∴要得到函數(shù)y=sin2x圖象,只需將函數(shù)y=sin(2x)的圖象向左平行移動個單位故選B【點睛】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律的簡單應(yīng)用,屬于基礎(chǔ)題10、C【解析】利用圖象求出函數(shù)的解析式,即可求得的值.【詳解】由圖可知,,函數(shù)的最小正周期為,則,所以,,由圖可得,因為函數(shù)在附近單調(diào)遞增,故,則,,故,所以,,因此,.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】由題意,根據(jù)必要不充分條件可得?,從而建立不等關(guān)系即可求解.【詳解】解:不等式的解集為,不等式的解集為,因為“”是“”的必要不充分條件,所以?,所以,解得,所以實數(shù)的取值范圍為,故答案為:.12、【解析】解:如圖,將EF平移到A1B1,再平移到AC,則∠B1AC為異面直線AB1與EF所成的角三角形B1AC為等邊三角形,故異面直線AB1與EF所成的角60°,13、【解析】求出扇形的半徑后,利用扇形的面積公式可求得結(jié)果.【詳解】由已知得弧長,,所以該扇形半徑,所以該扇形的面積.故答案為:14、【解析】圖像陰影部分對應(yīng)的集合為,,故,故填.15、①.②.【解析】先求出經(jīng)過,秒針轉(zhuǎn)過的圓心角的為,進(jìn)而表達(dá)出函數(shù)解析式,利用求出的解析式建立不等式,解出解集,得到答案.【詳解】經(jīng)過,秒針轉(zhuǎn)過的圓心角為,得.由,得,又,故,得,解得:,故一圈內(nèi)A與兩點距離地面的高度差不低于的時長為.故答案為:,16、【解析】根據(jù)題意,只要即可,再根據(jù)基本不等式中的“”的妙用,求得,解不等式即可得解.【詳解】根據(jù)題意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】由兩點式求出l1的斜率(1)再由兩點求斜率的到l2的斜率,由斜率相等求得a的值;(2)分l1的斜率為0和不為0討論,當(dāng)l1的斜率為0時,由M,N的橫坐標(biāo)相等求a得值;不為0時由兩直線的斜率乘積等于-1得答案【詳解】(1),即,解得(2),即,解得.【點睛】本題考查了直線的一般式方程與兩直線平行、垂直的關(guān)系,考查了分類討論的數(shù)學(xué)思想方法,是基礎(chǔ)題18、(1)0;(2);(3).【解析】(1)由三角函數(shù)的和差公式,倍角公式,輔助角公式化簡原式,帶入求值即可.(2)由化簡后的表達(dá)式代入公式即可求的.(3)恒成立問題,第一步求出函數(shù)的單調(diào)區(qū)間,結(jié)合函數(shù)性質(zhì)即可解得.【小問1詳解】化簡如下:.【小問2詳解】由(1)可知,周期,對稱軸.【小問3詳解】,所以任意,均有,解出函數(shù)的單調(diào)性增區(qū)間,,所以在遞增,成立,遞減,由對稱性可知,所以,所以19、(1)(2)【解析】(1)利用三角恒等變換化簡,由周期公式求解即可;(2)先求出的解析式,再把所求轉(zhuǎn)化為方程在上有2個不等的實數(shù)解,令,根據(jù)圖象即可求得結(jié)論【小問1詳解】解:,即,所以函數(shù)的最小正周期為【小問2詳解】解:由已知可得,方程在上有2個不等的實數(shù)解,即方程在上有2個不等的實數(shù)解令,因為,,,,,令,則,,作出函數(shù)圖象如下圖所示:要使方程在上有2個不等的實數(shù)解,則20、(1);(2)見解析;(3)【解析】(1)根據(jù)真數(shù)大于零列不等式,解得結(jié)果,(2)根據(jù)奇函數(shù)定義判斷并證明結(jié)果,(3)根據(jù)底與1的大小,結(jié)合對數(shù)函數(shù)單調(diào)性分類化簡不等式,解得結(jié)果.【詳解】(1)由,得-3<x<3,∴函數(shù)的定義域為(-3,3)(2)由(1)知,函數(shù)的定義域關(guān)于原點對稱,且h(-x)+h(x)=0,h(-x)=-h(x),∴函數(shù)奇函數(shù)(3),所以,解得,所以.21、(1);(2).【解析】(1)因為甲、乙、丙三位同學(xué)是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度區(qū)塊鏈技術(shù)應(yīng)用研究合同
- 公司委托代理合同范例
- 中銀e貸合同范例
- 圍墻全包工合同范例
- 場地以租抵債合同模板
- 墻紙工程合同范例
- 土方填海合同范例
- 雙方投資物業(yè)合同范例
- 2024年度汽車銷售人才培訓(xùn)合同
- 2024年度紅棗園旅游開發(fā)合作合同
- 2024二十屆三中全會知識競賽題庫及答案
- 員工獎懲通知單
- 畫法幾何 (210)標(biāo)高投影
- 期中考試班會PPT
- (完整word版)小學(xué)開展儀式教育的策略研究.
- 步兵班戰(zhàn)術(shù)教案(全)
- 推薦塞上風(fēng)情笛子簡譜
- 布魯納《教育過程》
- 樣品承認(rèn)書標(biāo)準(zhǔn)版
- 田間生產(chǎn)管理記錄檔案
- 智慧城市建設(shè)論文5篇
評論
0/150
提交評論