小學(xué)奧數(shù)-立體幾何講義_第1頁
小學(xué)奧數(shù)-立體幾何講義_第2頁
小學(xué)奧數(shù)-立體幾何講義_第3頁
小學(xué)奧數(shù)-立體幾何講義_第4頁
小學(xué)奧數(shù)-立體幾何講義_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

小學(xué)奧數(shù)-立體幾何講義

教學(xué)目標(biāo):

對于小學(xué)幾何而言,立體圖形的表面積和體積計算,既可以很好地考查

學(xué)生的空間想象能力,又可以具體考查學(xué)生在公式應(yīng)用中處理相關(guān)數(shù)據(jù)

的能力,所以,很多重要考試都很重視對立體圖形的考查.

知識點撥:

長方體和正方體

如右圖,長方體共有六個面(每個面都是長方形),八個頂點,十二條

棱.

①在六個面中,兩個對面是全等的,即三組對面兩兩全等.

(疊放在一起能夠完全重合的兩個圖形稱為全等圖形.)

②長方體的表面積和體積的計算公式是:

長方體的表面積:S氏方體=2(ab+be+cd);

長方體的體積:V^=abc.

③正方體是各棱相等的長方體,它是長方體的特例,它的六個面都是正

方形.

如果它的棱長為“,那么:S正方體=6/,/方體=/.

二、圓柱與圓錐

立體圖形表面積體積

圓柱國S圓柱=側(cè)面積+2個底面積=Inrh+2兀/Hatt="2〃

S網(wǎng)椎=側(cè)面積+底面積=360兀r+兀廣%錐體=§兀/〃

圓錐A/二.

注:/是母線,即從頂點到底面

圓上的線段長

例題精講:

如右圖,在一個棱長為10的立方體上截取一個d

長為8,寬為3,高為2的小長方體,那么新的q-K

幾何體的表面積是多少?

我們從三個方向(前后、左右、上下)考慮,新幾上二-------

何體的表面積仍為原立方體的表面積:10x10x6=600.

右圖是一個邊長為4厘米的正方體,分別在前/.........-

后、左右、上下各面的中心位置挖去一個邊長(芟/

1厘米的正方體,做成一種玩具.它的表面積是L

多少平方厘米?(圖中只畫出了前面、右面、上?皿

面挖去的正方體)J-----------

原正方體的表面積是4x4x6=96(平方厘米).每一個面被挖去一個邊長

是1厘米的正方形,同時又增加了5個邊長是1厘米的正方體作為玩具

的表面積的組成部分.總的來看,每一個面都增加了4個邊長是1厘米

的正方形.

從而,它的表面積是:96+4x6=120平方厘米.

【鞏固】在一個棱長為50厘米的正方體木塊,在它的八個角上各挖去

一個棱長為5厘米的小正方體,問剩下的立體圖形的表面積是多少?

對于和長方體相關(guān)的立體圖形表面積,一般從上下、左右、前后3個方

向考慮.變化前后的表面積不變:50x50x6=15000(平方厘米).

下圖是一個棱長為2厘米的正方體,在正方體上

表面的正中,向下挖一個棱長為1厘米的正方體

小洞,接著在小洞的底面正中向下挖一個棱長為

g厘米的正方形小洞,第三個正方形小洞的挖法

和前兩個相同為!厘米,那么最后得到的立體圖

4

形的表面積是多少平方厘米?

我們?nèi)匀粡?個方向考慮.平行于上下表面的各面面積之和:2x2x2=

8(平方厘米);左右方向、前后方向:2x2x4=16(平方厘米),lxlx4=4(平

方厘米),"*4=1(平方厘米),;Jx4=:(平方厘米),這個立體圖形

22444

的表面積為:8+16+4+1+1=291(平方厘米).

44

一個正方體木塊,棱長是1米,沿著水平方向?qū)⑺彸?片,每片又鋸

成3長條,每條又鋸成4小塊,共得到大大小小的長方體24塊,那么

這24塊長方體的表面積之和是多少?

鋸一次增加兩個面,鋸的總次數(shù)轉(zhuǎn)化為增加的面數(shù)的公式為:鋸的總次

數(shù)x2=增加的面數(shù).

原正方體表面積:lx1x6=6(平方米),一共鋸了(2-1)+(3一1)+(4一1)=6

次,

6+lxlx2x6=18(平方米).

【鞏固】(年走美六年級初賽)一個表面積為56cm。的長方體如圖切成27個

小長方體,這27個小長方體表面積的和是cm2.

/z

每一刀增加兩個切面,增加的表面積等于與切面平行的兩個表面積,所

以每個方向切兩刀后,表面積增加到原來的3倍,即表面積的和為

56x3=168(cm2).

如圖,25塊邊長為1的正方體積木拼成一個幾何體,表面積最小是多

少?

當(dāng)小積木互相重合的面最多時表面積最小.

設(shè)想27塊邊長為1的正方形積木,當(dāng)拼成一個3x3x3的正方體時,表面

積最小,現(xiàn)在要去掉2塊小積木,只有在兩個角上各去掉一塊小積木,

或在同一個角去掉兩塊相鄰的積木時,表面積不會增加,該幾何體表面

積為54.

要把12件同樣的長a、寬6、高力的長方體物品拼裝成一件大的長方體,

使打包后表面積最小,該如何打包?

(1)當(dāng)6=2力時,如何打包?

⑵當(dāng)C<2力時,如何打包?

⑶當(dāng)C>2力時,如何打包?

圖2和圖3正面的面積相同,側(cè)面面積=正面周長x長方體長,所以正面

的周長愈大表面積越大,圖2的正面周長是8力+66,圖3的周長是12加

4b.兩者的周長之差為2(6一2力.

當(dāng)6=2方時,圖2和圖3周長相等,可隨意打包;當(dāng)6<2分時,按圖2打

包;當(dāng)8>2力時,按圖3打包.

圖1圖2

【鞏固】要把6件同樣的長17、寬7、高3的長方體物品拼裝成一件大

的長方體,表面積最小是多少?

考慮所有的包裝方法,因為6=lx2x3,所以一共有兩種拼接方式:

第一種按長寬高1x1x6拼接,重疊面有三種選擇,共3種包裝方法.

第二種按長寬高1x2x3拼接,有3個長方體并列方向的重疊面有三種選

擇,有2個長方體并列方向的重疊面剩下2種選擇,一共有6種包裝方

法.

其中表面積最小的包裝方法如圖所示,表面積為1034.

如圖,在一個棱長為5分米的正方體上放一個棱長為4分米的小正方體,

求這個立體圖形的表面積.

我們把上面的小正方體想象成是可以向下“壓縮”的,“壓縮”后我們發(fā)

現(xiàn):小正方體的上面與大正方體上面中的陰影部分合在一起,正好是大

正方體的上面.這樣這個立體圖形的表面積就可以分成這樣兩部分:上下

方向:大正方體的兩個底面;四周方向(左右、前后方向):小正方體的

四個側(cè)面,大正方體的四個側(cè)面.上下方向:5x5x2=50(平方分米);側(cè)面:

5x5x4=100(平方分米),4x4x4=64(平方分米).這個立體圖形的表面積為:

50+100+64=214(平方分米).

(年“希望杯”五年級第2試)如圖,棱長分別為I厘米、2厘米、3厘米、

5厘米的四個正方體緊貼在一起,則所得到的多面體的表面積是

平方厘米.

(法1)四個正方體的表面積之和為:(『+22+32+52)x6=39x6=234(平方厘米),

重疊部分的面積為:12x3+(22x2+12)+(32+2?+/)+(32+2?+/)=3+9+14+14=40(平方厘

米),

所以,所得到的多面體的表面積為:234—40=194(平方厘米).

(法2)三視圖法.從前后面觀察到的面積為5、32+2、38平方厘米,從左右

兩個面觀察到的面積為52+32=34平方厘米,從上下能觀察到的面積為52=25

平方厘米.

表面積為(38+34+25)x2=194(平方厘米).

把19個棱長為1厘米的正方體重疊在一起,按右圖中的方式拼成一個

立體圖形.,求這個立體圖形的表面積.

從上下、左右、前后觀察到的的平面圖形如下面三圖表示.因此,這個

立體圖形的表面積為:2個上面+2個左面+2個前面.上表面的面積為:9

平方厘米,左表面的面積為:8平方厘米,前表面的面積為:10平方厘

米.因此,這個立體圖形的總表面積為:(9+8+10)x2=54(平方厘米).

上下面

【鞏固】用棱長是1厘米的立方塊拼成如右圖所示的立體圖形,問該圖

形的表面積是多少平方厘米?

該圖形的上、左、前三個方向的表面分別由9、7、7塊正方形組成.

該圖形的表面積等于(9+7+7)x2=46個小正方形的面積,所以該圖形表面積

為46平方厘米.

有30個邊長為1米的正方體,在地面上擺成右上圖的形式,然后把露

出的表面涂成紅色.求被涂成紅色的表面積.

4x4+(l+2+3+4)x4=56(平方米).

棱長是機厘米(加為整數(shù))的正方體的若干面涂上紅色,然后將其切割成

棱長是1厘米的小正方體.至少有一面紅色的小正方體個數(shù)和表面沒有

紅色的小正方體個數(shù)的比為13:12,此時,〃的最小值是多少?

切割成棱長是1厘米的小正方體共有4個,由于其中至少有一面是紅色

的小正方體與沒有紅色面的個數(shù)之比為13:12,而13+12=25,所以小正方體

的總數(shù)是25的倍數(shù),即病是25的倍數(shù),那么加是5的倍數(shù).

當(dāng)機=5時,要使得至少有一面的小正方體有65個,可以將原正方體的正

面、上面和下面涂色,此時至少一面涂紅色的小正方體有5x5+5x4x2=65個,

表面沒有紅色的小正方體有

125-65=60個,個數(shù)比恰好是13:12,符合題意.因此,m的最小值是5.

有64個邊長為1厘米的同樣大小的小正方體,其中34個為白色的,30

個為黑色的.現(xiàn)將它們拼成一個4x4x4的大正方體,在大正方體的表面上

白色部分最多可以是多少平方厘米?

要使大正方體的表面上白色部分最多,相當(dāng)于要使大正方體表面上黑色

部分最少,那么就要使得黑色小正方體盡量不露出來.

在整個大正方體中,沒有露在表面的小正方體有(4-2)3=8(個),用黑色的;

在面上但不在邊上的小正方體有(4-2)2x6=24(個),其中30—8=22個用黑色.

這樣,在表面的4x4x6=96個1x1的正方形中,有22個是黑色,96-22=74(個)

是白色,所以在大正方體的表面上白色部分最多可以是74平方厘米.

三個完全一樣的長方體,棱長總和是288厘米,每個長方體相交于一個

頂點的三條棱長恰是三個連續(xù)的自然數(shù),給這三個長方體涂色,一個涂

一面,一個涂兩面,一個涂三面.涂色后把三個長方體都切成棱長為1

厘米的小正方體,只有一個面涂色的小正方體最少有多少個?

每個長方體的棱長和是288+3=96厘米,所以,每個長方體長、寬、高的和

是96+4=24厘米.因為,每個長方體相交于一個頂點的三條棱長恰是三個

連續(xù)的自然數(shù),所以,每個長方體的長、寬、高分別是9厘米、8厘米、

7厘米.

要求切割后只有一個面涂色的小正方體最少有多少個,則需每一個長方

體按題意涂色時,應(yīng)讓切割后只有一個面涂色的小正方體最少.所以,

涂一面的長方體應(yīng)涂一個8x7面,有8x7=56個;

涂兩面的長方體,若兩面不相鄰,應(yīng)涂兩個8x7面,有8x7x2=112個;若兩

面相鄰,應(yīng)涂一個8x7面和一個9x7面,此時有7x(8+9-2)=105個,所以涂兩

面的最少有105個;

涂三面的長方體,若三面不兩兩相鄰,應(yīng)涂兩個8x7面、一個9x7面,有

7x(8+8+9-4)=147個;若三面兩兩相鄰,有(7-1)x(8-1)+(7-1)x(9-1)+(8-1)x(9-1)=146

個,所以涂三面的最少有146個.

那么切割后只有一個面涂色的小正方體最少有56+105+146=307個.

把一個大長方體木塊表面上涂滿紅色后,分割成若干個同樣大小的小正

方體,其中恰好有兩個面涂上紅色的小正方體恰好是100塊,那么至少

要把這個大長方體分割成多少個小正方體?

設(shè)小正方體的棱長為1,考慮兩種不同的情況,一種是長方體的長、寬、

高中有一個是1的情況,另一種是長方體的長、寬、高都大于1的情況.

當(dāng)長方體的長、寬、高中有一個是1時,分割后只有一層小正方體,其

中有兩個面涂上紅色的小正方體是去掉最外層一圈的小正方體后剩下的

那些.因為有兩個面涂上紅色的小正方體恰好是100塊,設(shè)ioo=axA,那

么分成的小正方體個數(shù)為

(a+2)x(b+2)xl=〃+2(a+"+4=2(a+A)+104,為了使小正方體的個數(shù)盡量少,應(yīng)使

(〃+6)最小,而兩數(shù)之積一定,差越小積越小,所以當(dāng)a“=10時它們的和

最小,此時共有

(10+2)x(10+2)=144個小正方體.

當(dāng)長方體的長、寬、高都大于1時,有兩個面涂上紅色的小正方體是去

掉8個頂點所在的小正方體后12條棱上剩余的小正方體,因為有兩個

面涂上紅色的小正方體恰好是100塊,所以長方體的長、寬、高之和是

100+4+2x3=31.由于三個數(shù)的和一定,差越大積越小,為了使小正方體的

個數(shù)盡量少,應(yīng)該令31=2+2+27,此時共有2x2x27=108個小正方體.

因為108044,所以至少要把這個大長方體分割成108個小正方體.

把正方體的六個表面都劃分成9個相等的正方形.用紅、黃、藍三種顏

色去染這些小正方形,要求有公共邊的正方形染不同的顏色,那么,用

紅色染的正方形最多有多少個?

一個面最多有5個方格可染成紅色(見左下圖).因為染有5個紅色方格

的面不能相鄰,可以相對,所以至多有兩個面可以染成5個紅色方格.

其余四個面中,每個面的四個角上的方格不能再染成紅色,至多能染4

個紅色方格(見上中圖).因為染有4個紅色方格的面也不能相鄰,可以

相對,所以至多有兩個面可以染成4個紅色方格.最后剩下兩個相對的

面,每個面最多可以染2個紅色方格(見右上圖).所以,紅色方格最多

有5x2+4x2+2x2=22(個).

(另解)事實上上述的解法并不嚴密,”如果最初的假設(shè)并沒有兩個相

對的有5個紅色方格的面,是否其他的四個面上可以出現(xiàn)更多的紅色方

格呢?”這種解法回避了這個問題,如果我們從約束染色方格數(shù)的本質(zhì)

原因入手,可嚴格說明22是紅色方格數(shù)的最大值.

對于同一個平面上的格網(wǎng),如果按照國際象棋棋盤的方式染色,那么至

少有一半的格子可以染成紅色.但是現(xiàn)在需要染色的是一個正方體的表

面,因此在分析問題時應(yīng)該兼顧棱、角等面與面相交的地方:

⑴如圖,每個角上三個方向的3個方格必須染成不同的三種顏色,所以

8個角上最多只能有8個方格染成紅色.

⑵如圖,陰影部分是首尾相接由9個方格組成的環(huán),這9個方格中只能有

4個方格能染成同一種顏色(如果有5個方格染同一種顏色,必然出現(xiàn)相

鄰,可以用抽屜原理反證之:先去掉一個白格,剩下的然后兩兩相鄰的

分成四個抽屜,必然有一個抽屜中有兩個紅色方格),像這樣的環(huán),在正

方體表面最多能找到不重疊的兩道(關(guān)于正方體中心對稱的兩道),涉及

的18個方格中最多能有8個可染成紅色.

⑶剩下6x3x3-8x3-9x2=12個方格,分布在6條棱上,這12個格子中只能有6

個能染成紅色.

綜上所述,能被染成紅色的方格最多能有8+8+6=22個格子能染成紅色,第

一種解法中已經(jīng)給出22個紅方格的染色方法,所以22個格子染成紅色是

最多的情況.

一個長、寬、高分別為21厘米、15厘米、12厘米的長方形.現(xiàn)從它的上面

盡可能大的切下一個正方體,然后從剩余的部分再盡可能大的切下一個

正方體,最后再從第二次剩余的部分盡可能大的切下一個正方體,剩下

的體積是多少立方厘米?

本題的關(guān)鍵是確定三次切下的正方體的棱長.由于21:15:12=7:5:4,為了方

便起見.我們先考慮長、寬、高分別為7厘米、5厘米、4厘米的長方體.

因為7>5>4,容易知道第一次切下的正方體棱長應(yīng)該是4厘米,第二次切

時,切下棱長為3厘米的正方體符合要求.第三次切時,切下棱長為2厘米

的正方體符合要求.

那么對于原長方體來說,三次切下的正方體的棱長分別是12厘米、9厘

米和6厘米,所以剩下的體積應(yīng)是:21x15x12-"+9,+6')=1107(立方厘米).

有黑白兩種顏色的正方體積木,把它擺成右圖所示的形狀,已知相鄰(有

公共面)的積木顏色不同,標(biāo)A的為黑色,圖中共有黑色積木多少塊?

A

分層來看,如下圖(切面平行于紙面)共有黑色積木17塊.

【鞏固】這個圖形,是否能夠由1x1x2的長方體搭構(gòu)而成?

每一個1x1x2的長方體無論怎么放,都包含了一個黑色正方體和一個白色

正方體,而黑色積木有17塊,白色積木有15塊,所以該圖形不能夠由

1x1x2的長方體搭構(gòu)而成.

【鞏固】有許多相同的立方體,每個立方體的六個面上都寫著同一個

數(shù)字(不同的立方體可以寫相同的數(shù)字)先將寫著2的立方體與寫著1

的立方體的三個面相鄰,再將寫著3的立方體寫著2的立方體相鄰(見

左下圖).依這樣構(gòu)成右下圖所示的立方體,它的六個面上的所有數(shù)字

之和是多少?

1

32

第一層如下圖,第二層、第三層依次比上面一層每格都多1(見下圖).

654

543

432

第一層第二層第三層

上面的9個數(shù)之和是27,由對稱性知,上面、前面、右面的所有數(shù)之和

都是27.同理,下面的9個數(shù)之和是45,下面、左面、后面的所有數(shù)之

和都是45.所以六個面上所有數(shù)之和是(27+45)x3=216.

(05年武漢明心杯數(shù)學(xué)挑戰(zhàn)賽)如圖所示,一個5x5x5的立方體,在一個方

向上開有1x1x5的孔,在另一個方向上開有2x1x5的孔,在第三個方向上開

有3x1x5的孔,剩余部分的體積是多少?表面積為多少?

求體積:

開了3x1x5的孔,挖去3x1x5=15,開了1x1x5的孔,

挖去1x1x5-1=4;開了2x1x5的孔,

挖去2xlx5-(2+2)=6,

剩余部分的體積是:5x5x5-(15+4+6)=100.

(另解)將整個圖形切片,如果切面平行于紙面,那么五個切片分別如圖:

得到總體積為:22x4+12=100?

求表面積:

表面積可以看成外部和內(nèi)部兩部分.外部的表面積為5x5x6-12=138,內(nèi)部

的面積可以分為前

后、左右、上下三個方向,面積分別為2x(2x5+lx5—lx2-lx3)=20、

2x(lx5+3x5-lx3-l)=32>2x(lx5+lx5-lxl-2)=14,所以總的表面積為

138+20+32+14=204.

(另解)運用類似于三視圖的方法,記錄每一方向上的不同位置上的裸露

正方形個數(shù):

前后方向:32

上下方向:30左右方向:40

總表面積為2x(32+30+40)=204.

【總結(jié)】“切片法”:全面打洞(例如本題,五層一樣),挖塊成線(例如本

題,在前一層的基礎(chǔ)上,一條線一條

線地挖),這里體現(xiàn)的思想方法是:化整為零,有序思考!

【鞏固】(年香港保良局第12屆小學(xué)數(shù)學(xué)世界邀請賽)如圖,原來的大

正方體是由125個小正方體所構(gòu)成的.其中有些小正方體已經(jīng)被挖除,圖中

涂黑色的部分就是貫穿整個大正方體的挖除部分.請問剩下的部分共有多

少個小正方體?

///////

對于這一類從立體圖形中間挖掉一部分后再求體積(或小正方體數(shù)目)

的題目一般可以采用“切片法”來做,所謂“切片法”,就是把整個立體

圖形切成一片一片的(或一層一層的),然后分別計算每一片或每一層的

體積或小正方體數(shù)目,最后再把它們相加.

采用切片法,俯視第一層到第五層的圖形依次如下,其中黑色部分表示

挖除掉的部分.

從圖中可以看出,第1、2、3、4、5層剩下的小正方體分別有22個、11

個、11個、6個、22個,所以總共還剩下22+11+11+6+22=72(個)小正方

體.

【鞏固】一個由125個同樣的小正方體組成的大正方體,從這個大正方

體中抽出若干個小正方體,把大正方體中相對的兩面打通,右圖就是抽

空的狀態(tài).右圖中剩下的小正方體有多少個?

解法一:(用“容斥原理”來解)由正面圖形抽出的小正方體有5x5=25個,

由側(cè)面圖形抽出的小正方體有5x5=25個,由底面圖形抽出的小正方體有

4x5=20個,正面圖形和側(cè)面圖形重合抽出的小正方體有Ix2+2xl+2x2=8個,

正面圖形和底面圖形重合抽出的小正方體有Ix3+2x2=7個,底面圖形和側(cè)

面圖形重合抽出的小正方體有Ix2+lxl+2x2=7個,三個面的圖形共同重合

抽出的小正方體有4個.根據(jù)容斥原理,25+25+20一8-7一7+4=52,所以共抽

出了52個小正方體.125-52=73,所以右圖中剩下的小正方體有73個.

注意這里的三者共同抽出的小正方體是4個,必須知道是哪4塊,這是

最讓人頭疼的事.

但你可以先構(gòu)造空的兩個方向上共同部分的模型,再由第三個方向來穿

過“花墻

這里,化虛為實的思想方法很重要.

解法二:(用“切片法”來解)

可以從上到下切五層,得:

⑴從上到下五層,如圖:

請注意這里的挖空的技巧是:先認一種方向.

比如:從上到下的每一層,首先都應(yīng)該有第一層的空四塊的情況,

即——

如果挖第二層:第⑴步,把中間這些位置的四塊挖走如圖:

第⑵步,把從右向左的兩塊成線地挖走.(請注意挖通的效果就是

成線挖去),如圖:

第⑶步,把從前向后的一塊(請注意跟第二層有關(guān)的只是一塊!)挖成線!

如圖:

(迎春杯高年級組復(fù)賽)右圖中的⑴⑵⑶⑷是同樣的小等邊三角形,⑸

⑹也是等邊三角形且邊長為⑴的2倍,⑺⑻⑼⑩是同樣的等腰直角三角

形,?是正方形.那么,以⑸⑹⑺⑻⑼⑩?為平面展開圖的立體圖形的

體積是以⑴⑵⑶⑷為平面展開圖的立體圖形體積的倍.

本題中的兩個圖都是立體圖形的平面展開圖,將它們還原成立體圖形,

可得到如下兩圖:

其中左圖是以⑴⑵⑶⑷為平面展開圖的立體圖形,是一個四個面都是正

三角形的正四面體,右圖以⑸(6)⑺⑻(9)(10)(11)為平面展開圖的立體圖形,

是一個不規(guī)則圖形,底面是(1D,四個側(cè)面是⑺⑻⑼(10),兩個斜面是⑸(6).

對于這兩個立體圖形的體積,可以采用套模法來求,也就是對于這種我

們不熟悉的立體圖形,用一些我們熟悉的基本立體圖形來套,看看它們

與基本立體圖形相比,缺少了哪些部分.

由于左圖四個面都是正三角形,右圖底面是正方形,側(cè)面是等腰直角三

角形,想到都用正方體來套.

對于左圖來說,相當(dāng)于由一個正方體切去4個角后得到(如下左圖,切去

ABDA,.CBDC,、RAGD、瓦AQ);而對于右圖來說,相當(dāng)于由一個正方體切

去2個角后得到(如下右圖,切去BACB,、DACD).

假設(shè)左圖中的立方體的棱長為0,右圖中的立方體的棱長為則以⑴⑵

⑶⑷為平面展開圖的立體圖形的體積為:=

233

以(5)(6)⑺⑻(9)(10)(11)為平面展開圖的立體圖形的體積為"二后x1k2=2".

233

由于右圖中的立方體的棱長即是題中正方形(ID的邊長,而左圖中的立方

體的每一個面的對角線恰好是正三角形⑴的邊長,通過將等腰直角三角

形⑺分成4個相同的小等腰直角三角形可以得到右圖中的立方體的棱長

是左圖中的立方體的棱長的2倍,即6=2”.

那么以⑴⑵⑶⑷為平面展開圖的立體圖形的體積與以⑸⑹⑺⑻(9)(10)(11)為

平面展開圖的立體圖形的體積的比為:。'當(dāng)32/:<(24=1:16,也就是說

3333v7

以⑸⑹⑺⑻(9X10)(11)為平面展開圖的立體圖形的體積是以⑴⑵⑶⑷為平面

展開圖的立體圖形體積的16倍.

圖⑴和圖⑵是以正方形和等邊三角形為面的立體圖形的展開圖,圖中所

有的邊長都相同.請問:圖⑴能圍起來的立體圖形的體積是圖⑵能圍起

來的立體圖形的體積的幾倍?

圖⑵

首先,我們把展開圖折成立體圖形,見下列示意圖:

對于這類題目,一般采用“套模法”,即用一個我們熟悉的基本立體圖形

來套,這樣做基于兩點考慮,一是如果有類似的模型,可以直接應(yīng)用其

計算公式;二是如果可以補上一塊或者放到某個模型里面,那么可以從

這個模型入手.

我們把圖⑴中的立體圖形切成兩半,再轉(zhuǎn)一轉(zhuǎn),正好放進去!我們看到

圖⑴與圖⑶的圖形位置的微妙關(guān)系:

1

和圖3一致!

圖⑶圖

(4)

由圖⑷可見,圖⑴這個立體的體積與圖⑶這個被切去了8個角后的立體

圖形的體積相等.

假設(shè)立方體的1條邊的長度是1,那么一個角的體積是9999上!,

2222348

所以切掉8個角后的體積是

486

再看圖⑵中的正四面體,這個正四面體的棱長與圖⑶中的每一條實線線

段相等,所以應(yīng)該用邊長為:的立方體來套.如果把圖⑵的立體圖形放

入邊長為』的立方體里的話是可以放進去的.

2

這是切去了四個角后的圖形,從上面的分析可知一個角的體積為,,所

48

以圖⑵的體積是:lxlxl-±x4.-L,那么前者的體積是后者的倍.

2224824624

如圖,用高都是I米,底面半徑分別為1.5米、1米和0.5米的3個圓柱組成

一個物體.問這個物體的表面積是多少平方米?(兀取3.14)

從上面看到圖形是右上圖,所以上下底面積和為2X3.14X1.52=14.13(立方米),

側(cè)面積為2x3.14x(0.5+1+1.5)x1=18,84(立方米),所以該物體的表面積是

14.13+18.84=32.97(立方米).

有一個圓柱體的零件,高10厘米,底面直徑是6厘米,零件的一端有一個

圓柱形的圓孔,圓孔的直徑是4厘米,孔深5厘米(見右圖).如果將這個

零件接觸空氣的部分涂上防銹漆,那么一共要涂多少平方厘米?

涂漆的面積等于大圓柱表面積與小圓柱側(cè)面積之和,為

6nx10+itx(-)2x2+4?tx5=6O7t+18TT+20n=987t=:307.72(平方厘米).

(第四屆希望杯2試試題)圓柱體的側(cè)面展開,放平,是邊長分別為10厘

米和12厘米的長方形,那么這個圓柱體的體積是立方厘米.(結(jié)

果用兀表示)

當(dāng)圓柱的高是12厘米時體積為"(3))12=亞(立方厘米)

2兀兀

當(dāng)圓柱的高是12厘米時體積為"(c)叼0=獨(立方厘米).所以圓柱體的

2兀71

體積為您立方厘米或圖立方厘米.

71兀

如右圖,是一個長方形鐵皮,利用圖中的陰影部分,剛好能做成一個油

桶(接頭處忽略不計),求這個油桶的容積.(兀=314)

^2_______________________

----------16.56m---------?

圓的直徑為:16.56+(1+3.14)=4(米),而油桶的高為2個直徑長,即為:4x2=8(m),

故體積為100.48立方米.

【鞏固】如圖,有一張長方形鐵皮,剪下圖中兩個圓及一塊長方形,正

好可以做成1個圓柱體,這個圓柱體的底面半徑為10厘米,那么原來

長方形鐵皮的面積是多少平方厘米?(兀=3.14)

做成的圓柱體的側(cè)面是由中間的長方形卷成的,可見這個長方形的長與

旁邊的圓的周長相等,則剪下的長方形的長,即圓柱體底面圓的周長為:

2x7txlO=62.8(厘米),

原來的長方形的面積為:00x4+62.8)x(10x2)=2056(平方厘米).

把一個高是8厘米的圓柱體,沿水平方向鋸去2厘米后,剩下的圓柱體

的表面積比原來的圓柱體表面積減少12.56平方厘米.原來的圓柱體的體

積是多少立方厘米?

沿水平方向鋸去2厘米后,剩下的圓柱體的表面積比原來的圓柱體表面

積減少的部分為減掉的2厘米圓柱體的側(cè)面積,所以原來圓柱體的底面

周長為12.56+2=6.28厘米,底面半徑為6.28+3.14+2=1厘米,所以原來的圓柱

體的體積是兀xFx8=8兀=25.12(立方厘米).

一個圓柱體的體積是50.24立方厘米,底面半徑是2厘米.將它的底面平

均分成若干個扇形后,再截開拼成一個和它等底等高的長方體,表面

積增加了多少平方厘米?(,=3.14)

從圖中可以看出,拼成的長方體的底面積與原來圓柱體的底面積相同,

長方體的前后兩個側(cè)面面積與原來圓柱體的側(cè)面面積相等,所以增加的

表面積就是長方體左右兩個側(cè)面的面積.

(法1)這兩個側(cè)面都是長方形,且長等于原來圓柱體的高,寬等于圓柱

體底面半徑.

可知,圓柱體的高為50.24+(3.14x22)=4(厘米),所以增加的表面積為2x4x2=16

(平方厘米);

(法2)根據(jù)長方體的體積公式推導(dǎo).增加的兩個面是長方體的側(cè)面,側(cè)

面面積與長方體的長的乘積就是長方體的體積.由于長方體的體積與圓

柱體的體積相等,為50.24立方厘米,而拼成的長方體的長等于圓柱體底面

周長的一半,為3.14x2=6.28厘米,所以側(cè)面長方形的面積為50.24+6.28=8平方

厘米,所以增加的表面積為8x2=16平方厘米.

(年“希望杯”五年級第2試)一個擰緊瓶蓋的瓶子里面裝著一些水(如

圖),由圖中的數(shù)據(jù)可推知瓶子的容積是立方厘米.金取3-4)

(單位:厘米)

由于瓶子倒立過來后其中水的體積不變,所以空氣部分的體積也不變,

從圖中可以看出,瓶中的水構(gòu)成高為6厘米的圓柱,空氣部分構(gòu)成高為

10.8=2厘米的圓柱,瓶子的容積為這兩部分之和,所以瓶子的容積為:

7tx(-)2x(6+2)=3.14x32=100.48(立方厘米).

【鞏固】一個酒精瓶,它的瓶身呈圓柱形(不包括瓶頸),如圖.已知它

的容積為26.4兀立方厘米.當(dāng)瓶子正放時,瓶內(nèi)的酒精的液面高為6厘米;

瓶子倒放時,空余部分的高為2厘米.問:瓶內(nèi)酒精的體積是多少立方

厘米?合多少升?

由題意,液體的體積是不變的,瓶內(nèi)空余部分的體積也是不變的,因此

可知液體體積是空余部分體積的6+2=3倍.所以酒精的體積為

26.4兀x3=62.172立方厘米,而62.172立方厘米=62.172毫升=0.062172升.

3+1

【鞏固】一個蓋著瓶蓋的瓶子里面裝著一些水,瓶底面積為1。平方厘

米,(如下圖所示),請你根據(jù)圖中標(biāo)明的數(shù)據(jù),計算瓶子的容積是一

由已知條件知,第二個圖上部空白部分的高為7.5=25,從而水與空著的

部分的比為4:2=2:1,由圖1知水的體積為10x4,所以總的容積為

40+2x(2+l)=60立方厘米.

一個盛有水的圓柱形容器,底面內(nèi)半徑為5厘米,深20厘米,水深15

厘米.今將一個底面半徑為2厘米,高為17厘米的鐵圓柱垂直放入容

器中.求這時容器的水深是多少厘米?

若圓柱體能完全浸入水中,則水深與容器底面面積的乘積應(yīng)等于原有水

的體積與圓柱體在水中體積之和,因而水深為:拉等3=17.72(厘米).

它比圓柱體的高度要大,可見圓柱體可以完全浸入水中.

于是所求的水深便是17.72厘米.

有甲、乙兩只圓柱形玻璃杯,其內(nèi)直徑依次是10厘米、20厘米,杯中

盛有適量的水.甲杯中沉沒著一鐵塊,當(dāng)取出此鐵塊后,甲杯中的水位

下降了2厘米;然后將鐵塊沉沒于乙杯,且乙杯中的水未外溢.問:這

時乙杯中的水位上升了多少厘米?

兩個圓柱直徑的比是1:2,所以底面面積的比是1:4.鐵塊在兩個杯中排開

的水的體積相同,所以乙杯中水升高的高度應(yīng)當(dāng)是甲杯中下降的高度的

1,即2」=0.5(厘米).

44

如圖,甲、乙兩容器相同,甲容器中水的高度是錐高的g,乙容器中水的

高度是錐高的比較甲、乙兩容器,哪一只容器中盛的水多?多的是

少的的幾倍?

貝I」有V容器=;口,,

1Z1/2、22783lz12』1/2、22,192,

匕水=-K(―r)x—n=-兀廣〃,K]人=-nrh—兀(―r)x—//=一兀廣〃,

乙水33381平水333381

豆小

口=j=12,即甲容器中的水多,甲容器中的水是乙容器中水的空倍.

“,88

81

(年仁華考題)如圖,有一卷緊緊纏繞在一起的塑料薄膜,薄膜的直徑為

20厘米,中間有一直徑為8厘米的卷軸,已知薄膜的厚度為0.04厘米,

則薄膜展開后的面積是平方米.

薄膜展開后為一個長方體,體積保持不變,而厚度為0.04厘米,所以薄膜

展開后的面積為

8400兀+0.04=659400平方厘米=65.94平方米.

另解:也可以先求出展開后薄膜的長度,再求其面積.

由于展開前后薄膜的側(cè)面的面積不變,展開前為兀,居)-沖圖:84兀(平方

厘米),展開后為一個長方形,寬為0.04厘米,所以長為84兀+0.04=6594厘米,

所以展開后薄膜的面積為6594x100=659400平方厘米=65.94平方米.

【鞏固】圖為一卷緊繞成的牛皮紙,紙卷直徑為20厘米,中間有一直徑

為6厘米的卷軸.已知紙的厚度為04毫米,問:這卷紙展開后大約有

多長?

將這卷紙展開后,它的側(cè)面可以近似的看成一個長方形,它的長度就等

于面積除以寬.這里的寬就是紙的厚度,而面積就是一個圓環(huán)的面積.

因此,紙的長度:

?紙卷側(cè)面積_3.14x102-3.14x323.14x(100-9)=71435(厘米)

~紙的厚度(X04-0X)4-

所以,這卷紙展開后大約7L4米.

如圖,48c是直角三角形,A3、AC的長分別是3和4.將AA8C繞AC旋轉(zhuǎn)

一周,求AABC掃出的立體圖形的體積.(71=3.14)

如右上圖所示,WC掃出的立體圖形是一個圓錐,這個圓錐的底面半徑

為3,高為4,

體積為:,X71x32x4=12兀=37.68.

3

已知直角三角形的三條邊長分別為3cm,4cm,5cm,分別以這三邊軸,

旋轉(zhuǎn)一周,所形成的立體圖形中,體積最小的是多少立方厘米?(兀取

3.14)

以3cm的邊為軸旋轉(zhuǎn)一周所得到的是底面半徑是4cm,高是3cm的圓錐體,

體積為gx3.14乂4葭3=50.24(cmb

以4cm的邊為軸旋轉(zhuǎn)一■周所得到的是底面半徑是3cm,局是4cm的圓錐體,

體積為-x3.14x32x4=37.68(cm3)

3

以5cm的邊為軸旋轉(zhuǎn)一周所得到的是底面半徑是斜邊上的高3x4+5=2.4cm

的兩個圓錐,高之和是5cm的兩個圓的組合體,體積為

12?

-X3.14X2.42X5=30.144(cm3)

【鞏固】如圖,直角三角形如果以抬邊為軸旋轉(zhuǎn)一周,那么所形成的圓

錐的體積為麻,以AC邊為軸旋轉(zhuǎn)一周,那么所形成的圓錐的體積為3,

那么如果以轉(zhuǎn)為軸旋轉(zhuǎn)一周,那么所形成的幾何體的體積是多少?

cA

設(shè)3C=a,AC斗,那么以3c邊為軸旋轉(zhuǎn)一周,所形成的圓錐的體積為竽,

以AC邊為軸旋轉(zhuǎn)一周,那么所形成的圓錐的體積為中,由此可得到兩

條等式:

收、48,兩條等式相除得到將這條比例式再代入原來的方程中就能

得到根據(jù)勾股定理,直角三角形的斜邊鉆的長度為5,那么斜邊上

也=4

的高為2.4.

如果以為軸旋轉(zhuǎn)一周,那么所形成的幾何體相當(dāng)于兩個底面相等的圓

錐疊在一起,底面半徑為2.4,高的和為5,所以體積是理2=9.6兀.

如圖,ABCD是矩形,BC=6cm,AB=10cm,對角線AC、8。相交O.E、尸分

別是犯與5c的中點,圖中的陰影部分以防為軸旋轉(zhuǎn)一周,則白色部分

掃出的立體圖形的體積是多少立方厘米?(兀取3)

BFCB

掃出的圖形如右上圖所示,白色部分實際上是一個圓柱減去兩個圓錐后

所形成的圖形.

兩個圓錐的體積之和為2乂u兀832*5=30兀=90(立方厘米);

3

圓柱的體積為兀X32X10=270(立方厘米),

所以白色部分掃出的體積為270-90=180(立方厘米).

【鞏固】(2006年第十一屆華杯賽決賽試題)如圖,ABCD是矩形,8c=6cm,

A8=10cm,對角線AC、處相交O.圖中的陰影部分以CO為軸旋轉(zhuǎn)一周,則

陰影部分掃出的立體的體積是多少立方厘米?

設(shè)三角形8。以8為軸旋轉(zhuǎn)一周所得到的立體圖形的體積是V,貝山等于

高為10厘米,底面半徑是6厘米的圓錐,減去2個高為5厘米,底面半

徑是3厘米的圓錐的體積后得到.

所以,V=-x7tx62xl0-2x-x7tx32x5=90n(立萬厘米),

33

那么陰影部分掃出的立體的體積是"=180/540(立方厘米).

(人大附中分班考試題目)如圖,在一個正方體的兩對側(cè)面的中心各打通

一個長方體的洞,在上下底面的中心打通一個圓柱形的洞.已知正方體

邊長為10厘米,側(cè)面上的洞口是邊長為4厘米的正方形,上下底面的

洞口是直徑為4厘米的圓,求此立體圖形的表面積和體積.

⑴先求表面積.表面積可分為外側(cè)表面積和內(nèi)側(cè)表面積.

外側(cè)為6個邊長10厘米的正方形挖去4個邊長4厘米的正方形及2個

直徑4厘米的圓,所以,外側(cè)表面積為:10x10x6-4x4x4-兀x2?x2=536-8兀(平

方厘米);

內(nèi)側(cè)表面積則為右上圖所示的立體圖形的表面積,需要注意的是這個圖

形的上下兩個圓形底面和前后左右4個正方形面不能計算在內(nèi),所以內(nèi)

側(cè)表面積為:

4x3xl6+2x(4x4-7tx22)+27tx2x3x2=192+32-87t+247t=224+1671(平方厘米),

所以,總表面積為:224+16兀+536-8兀=760+8兀=785.12(平方厘米).

⑵再求體積.計算體積時將挖空部分的立體圖形取出,如右上圖,只要

求出這個幾何體的體積,用原立方體的體積減去這個體積即可.

挖出的幾何體體積為:4x4x3x4+4x4x4+兀x2?x3x2=192+64+24兀=256+24兀(立方厘

米);

所求幾何體體積為:10x10x10-(256+24兀)=668.64(立方厘米).

(《小學(xué)生數(shù)學(xué)報》邀請賽)從一個棱長為10厘米的正方形木塊中挖去

一個長10厘米、寬2厘米、高2厘米的小長方體,剩下部分的表面積

是多少?(寫出符合要求的全部答案)

按圖1所示沿一條棱挖,為592平方厘米;

按圖2所示在某一面上挖,為632平方厘米;

按圖3所示在某面上斜著挖,為648平方厘米;

按圖4所示挖通兩個對面,為672平方厘米.

一個酒瓶里面深30cm,底面內(nèi)直徑是10cm,瓶里酒深15cm.把酒瓶塞緊后

使其瓶口向下倒立這時酒深25cm.酒瓶的容積是多少?(兀取3)

30

觀察前后,酒瓶中酒的總量沒變,即瓶中液體體積不變.

當(dāng)酒瓶倒過來時酒深25cm,因為酒瓶深30cm,這樣所??臻g為高5cm的圓

柱,再加上原來15cm高的酒即為酒瓶的容積.酒的體積:15兀xWx竺=375兀

22

瓶中剩余空間的體積(30-25)兀x"x3=125兀,酒瓶容積:375兀+125兀=50071=15(X)(011)

22

如右圖所示,由三個正方體木塊粘合而成的模型,它們的棱長分別為1

米、2米、4米,要在表面涂刷油漆,如果大正方體的下面不涂油漆,則

模型涂刷油漆的面積是多少平方米?

該圖形從前、后、左、右四面觀察到的面積都是+4?=21平方米,從上

面觀察到的面積是4'16平方米,由于下面不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論