版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ShapeandMatching
AndrewBender
AlexanderCobian
Topics
?ApproachesInvolvingNewDescriptors
-ShapeContexts
-MatchingLocalSelf-Similarities
?NovelMatchingTechniques
-PyramidMatchKernel
-SpatialPyramidMatching
ShapeContexts(2002)
?ShapeMatchingandObjectRecognitionUsing
ShapeContexts
-SergeBelongie
-JitendraMalik
-JanPuzicha
ShapeContexts(2002)
S5
?Asvectorsofpixelbrightnessvalues,very
different
?Asshapestohumanperception,verysimilar
Threestepstoshapematchingwith
shapecontexts
1.Findthecorrespondencebetweensetsof
pointsfromthetwoshapes
2.Usethematchestocomputeanalignment
transform
3.Computethe"distance"betweentheshapes
Threestepstoshapematchingwith
shapecontexts
1.Findthecorrespondencebetweensetsof
pointsfromthetwoshapes
2.Usethematchestocomputeanalignment
transform
3.Computethe"distance"betweentheshapes
Shapecontextsareapointdescriptorusedinstep1
Qj
~100pointsaresampledat
randomfromtheedge.
Uniformityisnotrequired!
Histogramusesbins
whichareuniformin
log-polarspace.
Rotationinvariance
?Ifrotationinvarianceisdesiredforadomain,
theshapecontextcanbecalculatedwiththe
tangentvectorasthex-axis.
?Formanydomainsthisisundesirable.
Matchingpoints
?Mustfindthedistancefromeverypointinone
imagetoeverypointintheother
?Dummypointswithaconstantedistancefrom
everyotherpointareaddedtobothsets
?Fornon-dummypoints,thecostofmatchingis
theL2norm
ShapeDistance
?Theauthorsuseaniterativemethodto
measurethemagnitudeofthetransformation
requiredtoalignthepoints
CategorizationofImages
?Prototype-basedapproach(withk-NN)
?Prototypesarechosenusingk-medoids
?kisinitializedtothenumberofcategories
?Worstcategoryissplituntiltraining
classificationerrordropsbelowacriterion
level
Application:DigitRecognition
210:58a1:
2le92Q77二
948
la-s132/015317(1
213q
?
4/z的K>
Trainingsetsize:
弓
32099T1791:2-?71879:8-?319029->4
-2772<
38s307yay
20,00034762420
e
826;0-Yb57的3
Testsetsize:-207-4:M3s2448:4T92463:2-?02583:9-?7
10,000vi夕。夕
7j
M3251:2T,34216K3476:3-?7
gs今
Error:
0.63%Z67
吊
og皿43769T44498:8-?74506:9-?7
,[夕p)
-*X叱
WI6555:2-?765729-?76577:7-416596:0-*7
I?)779
K:
LJ95067-?296419-+79730:5-*6985l:0-*6
Application:BreakingCAPTCHA
鎘爸密室浸翳感
盛最蠅瀚啜弱羲92%successrateon
EZ-Gimpy
weight
「,「「尸
again
蕊mW,-jewuL
,JI,E
承運(yùn)郎總滔鎘盜種三
陛登二三中,$oxiiid^v"%;,二口匚二:甘寡
建懣遞遞逑逑11space
rice
CCF卜ATK
pwr-4**sock
Application:BreakingCAPTCHA
Mustidentify1版P
threewords.
33%successrate
onGimpy.
Application:TrademarkRetrieval
?Canbeusedto
finddifferent
shapeswithquery1:0.0862:0.1083:0.109
similarelements.至
query1:0.0662:0.0733:0.077
?UsefultoRADIO<PISTA
determinecasesqueryI:0.0462:0.1073:0.114
oftrademarkA岸
infringement.queiy1:0.0462:0.1073:0.114
Application:3DObjectRecognition
Notthemostnatural
applicationofshape
contexts.
Testexamplescan
onlybematchedtoan
imagetakenfroma
verysimilarangle.
Shapecontextconclusions
?Shapecontextisalocaldescriptorthat
describesapoint'slocationrelativetoits
neighbors
?Goodatcharacterrecognition,comparisonof
isolated2Dstructures
?Notwellsuitedtoclassificationofobjectswith
significantvariance
MatchingImages/VideoUsing
LocalSelf-Similarities(2007)
?MatchingLocalSelf-SimilaritiesacrossImages
andVideos
-EliShechtman
-MichalIrani
MatchingImages/VideoUsing
LocalSelf-Similarities(2007)
?Allofthese
imagescontain
thesameobject.
?Theimagesdo□□oo
口
notsharecolors,o口△△△A△△o
△口△口△
△o△
textures,or□△o
o△□△△°
edges.□△△△°
o□
Problem:
?PreviousDescriptorsforImageMatching:
-Pixelintensityorcolorvaluesoftheentireimage
-Pixelintensityorcolorvaluesofpartsoftheimage
一Texturefilters
-Distribution-baseddescriptors(e.g.,SIFT)
一Shapecontext
?Alloftheseassumethatthereexistsavisual
propertythatissharedbythetwoimages.
Solution:A"Self-Similarity"Descriptor
?Thefourheartimagesaresimilaronlyinthat
thelocalinternallayoutsoftheirself-
similaritiesareshared.
?Videodata(seenasacubeofpixels)isrife
withself-similarity.
GeneralApproach
?Oursmallestunitofcomparisonisthe"patch"
ratherthanthepixel.
?Patchesarecomparedtoalarger,encompassing
imageregion.
InputimageCorrelationImage
surfacedescriptor
置;
image
region?、
image百y
patchg:
GeneralApproach
?Thecomparisonresultsinacorrelationsurfacewhich
determinesnearbyareasoftheimagewhichare
similartothecurrentpatch.
?Thecorrelationsurfaceisusedtoproduceaself-
similarityimagedescriptorforthepatch.
InputimageCorrelationImage
surfacedescriptor
GeneralApproach
?Forvideodata,thepatchandregionarecubes,
astimeisthedepthdimension.
?Theresultingvideodescriptoriscylindrical.
CorrelationVideo
volumedescriptor
DescriptorGenerationProcess
Foreveryimagepatchq(e.g.,5x5pixelarea)
一Foreverypatch-sizedareacontainedintheenclosing
imageregion(eg,50x50pixelarea)
?CalculateSSDanddeterminecorrelationsurface
SSDq(x’y)
Sq@y)=exp—
max(varnoisefvarauto
?varnoiseisaconstantwhichspecifiesthelevelofacceptable
photometricvariation
1z
?vardmUitLnU(、q)isthemaximalvarianceofthedifferenceofall
patchesnearq
DescriptorGenerationProcess
?Transformeachcorrelationsurfacetolog-
polarcoordinateswith80bins(20angles,4
radialintervals)
?Thelargestvalueineachbindeterminesthe
entryinthedescriptor.
DescriptorGenerationProcess
DescriptorGenerationProcess
?Videodataadaptations:
-Imagepatchexistsinthreedimensions,butis
usuallychosentohave1framedepth(e.g.,5x5x1)
-Imageregionencompassesseveralframes(e.g.,
60x60x5)
一Thiscreatesacuboidcorrelationvolume,from
whichwegenerateacylindricaldescriptorby
binningitinloglogpolarcoordinates
PropertiesoftheSelf-Similarity
Descriptor
?Self-similaritydescriptorsarelocalfeatures
?Thelog-polarrepresentationallowsforsmall
affinedeformations(likeforshapecontexts)
?Thenatureofbinningallowsfornon-rigid
deformations
?Usingpatchesinsteadofpixelscapturesmore
meaningfulpatterns
PerformingShapeMatching
1.Calculateself-similaritydescriptorsforthe
imageatavarietyofscales(givesusinvariance
toscale)
2.Filterouttheuninformativedescriptorsforeach
scale
3.Employprobabilisticstargraphmodeltofind
theprobabilityofapatternmatchateachsite
foreachscale
4.Normalizeandcombinetheprobabilitymaps
usingaweightedaverage
Results
?Resultsrequireonlyonequeryimagewhich
canbemuchsmallerthanthetargetimages
?Processevenworkswhenoneoftheimagesis
hand-drawn
Results
Results
Sketch
Template
Inputvideo
[Sh?chtm?n-lraniCVPR
[Shechtman-lraniCVPR'07]
Our
result
Image1Image2OurMethodGLOHShapeMutual
(template)(extendedSIFT)ContextInformation
X
衣
應(yīng)
Self-SimilarityConclusions
?Candiscoversimilarshapesinimagesthat
sharenocommonimageproperties
?Requiresonlyasinglequeryimagetoperform
complexshapedetection
?Hand-drawnsketchesaresufficienttofind
matches
?Videoisanaturalextension
ThePyramidMatchKernel(2005)
?ThePyramidMatchKernel:Discriminative
ClassificationwithSetsofImageFeatures
-KristenGrauman
-TrevorDarrell
ThePyramidMatchKernel(2005)
?SupportVector
Machines++
-Widelyused+
approachto+-
discriminative
classification+
-Findstheoptimal
separating
hyperplanebetween
twoclasses▼
ThePyramidMatchKernel(2005)
?Kernelscanbeusedtotransformthefeature
space(e.g.XOR)
?Kernelsaretypicallysimilaritymeasures
betweenpointsintheoriginalfeaturespace
ThePyramidMatchKernel(2005)
?Mostkernelsareusedonfixed-lengthfeature
vectorswhereorderingismeaningful
?Inimagematching,thenumberofimage
featuresdiffer,andtheorderingisarbitrary
?Furthermore,mostkernelstakepolynomial
time,whichisprohibitiveforimagematching
Desirablecharacteristicsinan
imagematchingkernel
?Capturesco-occurrences
?Ispositive-definite
?Doesnotassumeaparametricmodel
?Canhandlesetsofunequalcardinality
?Runsinsub-polynomialtime
?Nopreviousimagematchingkernelshadallfour
ofthefirstcharacteristics,andallranin
polynomialtime
GeneralApproach
?Dividethefeaturespaceintobinsofequalsize
?Repeat
-Countthefeatureswhichfallintoeachbinfor
bothimages
-Minthetwocountstofindtheoverlapineachbin
-Calculatenewmatchscorebasedonnewoverlaps
andeaseofoverlappingatthisresolution
-Createanewsetofbinswithsidelengthdouble
thatofthecurrentsidelength
GeneralApproach
n
Process
?InputspaceX
?d-dimensionalfeaturevectorsthat
-areboundedbyasphereofdiameterD
一haveaminimuminter-vectordistanceof學(xué)
Process
?FeatureExtractionAlgorithm:
W(x)=[H.1(X),H0(X),...,HL(X)]
?Harehistograms
?Listhenumberoflevelsinthepyramid
Process
?Similaritybetweentwofeaturesetsisdefinedas:
L
K△(叭叭z))={wM=
i=02
?Njisthenumberofnewmatchesacrossallbins
?Wjisthemaximumdistancethatcouldexist
betweenpointsthatmatchedatthislevel
Process
(a)Pointsets(b)Histosrampyramids(c)Intersections
Process
?Tocounteractthearbitrarynatureofthebin
borders,theentireprocessisrepeatedseveral
timeswiththeoriginrandomlyshifted.
PartialMatchCorrespondences
?Unequalcardinalitiesarenotanissue
?Algorithmmatchesthemostsimilarpairsfirst;
onlytheleastsimilarfeatureswillbe
unmatched
Results:SyntheticData
Approximationoftheoptimalbiy^ctivematching
19000
16000?Pyramidmatch
?Optimal1.6
14000
12000
o
o
u10000
g
ID
fi
6000
0.6
4000
0.4
02
50001000000
54MM10000
EqualCardinalitiesUnequalCardinalities
Results:ObjectRecognition
ObjectrecognitiononETH-80images
⑥
)。
A
o
e
n』
880
E75
u70
o65
一
七60
U
6
0
0
0
B
55
o20406080100120
Timetogenerate400x400kernelmatrix(sec)
PyramidKernelConclusions
?Bynotsearchingforspecificfeature
correspondences,thekernelcanruninless
thanpolynomialtime
?Accuracyisgenerallyhigherthanotherkernels
onbothartificialandreal-worlddata
?Canhandlearbitrary-lengthfeaturesets
SpatialPyramidMatching(2006)
?BeyondBagsofFeatures:SpatialPyramid
MatchingforRecognizingNatureScene
Categories
-SvetlanaLazebnik
一CordeliaSchmid
-JeanPonce
SpatialPyramidMatching(2006)
?Task:Wholeimageclassification
-Bagoffeaturesmethods(likepyramidkernel)are
somewhateffective,butignorefeaturelocation
?Alternatesolution:Kernel-basedrecognition
methodthatcalculatesaglobalrough
geometriccorrespondenceusingapyramid
matchingscheme
GeneralApproach
?Similarpyramidmatchingschemetoprevious
approach,but
-pyramidmatchinginimagespace
一clusteringinfeaturespace
?UsetrainingdatatoclusterfeaturesintoM
types
?Withinimage-spacebins,countoccurrences
ofeachfeaturetype
Process
?Algorithmparameters
-M=numberoffeaturetypestolearn(200)
-L=levelsinthepyramid(2)
?LearnMfeatureprototypesviak-means
clustering
?Ass
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)塑膠玩具行業(yè)并購(gòu)重組擴(kuò)張戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)個(gè)人護(hù)理電器行業(yè)全國(guó)市場(chǎng)開拓戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)汗蒸館行業(yè)營(yíng)銷創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)紅外探測(cè)器行業(yè)全國(guó)市場(chǎng)開拓戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)經(jīng)濟(jì)型酒店行業(yè)并購(gòu)重組擴(kuò)張戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)碳納米管行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 自動(dòng)噴水系統(tǒng)設(shè)計(jì)規(guī)范
- 建設(shè)三北工程-促進(jìn)社會(huì)和諧
- 2025年鋼球全陶瓷軸承項(xiàng)目可行性研究報(bào)告
- 江西省吉安市峽江縣2023-2024學(xué)年九年級(jí)上學(xué)期期末化學(xué)試題
- 竣工驗(yàn)收消防查驗(yàn)和消防驗(yàn)收
- 衛(wèi)生院崗位風(fēng)險(xiǎn)分級(jí)和監(jiān)管制度工作方案
- 2016-2023年大慶醫(yī)學(xué)高等??茖W(xué)校高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 供應(yīng)商審核培訓(xùn)教程
- 整合營(yíng)銷策劃-標(biāo)準(zhǔn)化模板
- 物業(yè)前期介入與承接查驗(yàn)要點(diǎn)精講培訓(xùn)
- 四川省廣元市2022-2023學(xué)年八年級(jí)上學(xué)期語文期末試卷(含答案)
- 抗震支吊架-檢驗(yàn)批質(zhì)量驗(yàn)收記錄
- 【APP違規(guī)收集個(gè)人信息的法律問題分析9800字(論文)】
- 商品房預(yù)售合同簽約證明和預(yù)告登記申請(qǐng)書
- 質(zhì)量管理體系成熟度評(píng)估表
評(píng)論
0/150
提交評(píng)論