版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PAGEPAGE1備戰(zhàn)2024年高考數(shù)學模擬卷03(新高考Ⅰ卷專用)第I卷(選擇題)一、單項選擇題1.若集合,,則(
)A. B. C. D.〖答案〗B〖解析〗,,,又,.故選:B.2.已知(,為虛數(shù)單位),若是實數(shù),則(
)A. B.C. D.〖答案〗A〖解析〗因為是實數(shù),所以,故選:A3.已知一個古典概型,其樣本空間中共有12個樣本點,其中事件有6個樣本點,事件有4個樣本點,事件有8個樣本點,則(
)A. B. C. D.〖答案〗D〖解析〗根據(jù)概率公式計算可得,,;由概率的加法公式可知,代入計算可得故選:D4.若一系列函數(shù)的〖解析〗式和值域相同,但定義域不相同,則稱這些函數(shù)為“同值函數(shù)”.例如函數(shù),與函數(shù),即為“同值函數(shù)”,給出下面四個函數(shù),其中能夠被用來構(gòu)造“同值函數(shù)”的是(
)A. B. C. D.〖答案〗D〖解析〗要想能夠被用來構(gòu)造“同值函數(shù)”,則要函數(shù)不單調(diào),ABC選項,在R上單調(diào)遞減,在R上單調(diào)遞增,在上單調(diào)遞增,ABC錯誤;D選項,在上單調(diào)遞減,在上單調(diào)遞增,不妨設(shè),與函數(shù),,兩者的值域相同,為同值函數(shù),D正確.故選:D5.已知拋物線的焦點為,準線與軸的交點為,點在拋物線上,且,,則(
)A. B. C. D.〖答案〗A〖解析〗根據(jù)拋物線,得:,因為:,得三點共線,所以直線過點且斜率不為,故設(shè)直線的方程為:,與拋物線方程聯(lián)立得:,化簡得:,設(shè),此時,根據(jù)根與系數(shù)的關(guān)系得:.由,知,即,化簡得:,又因為點在拋物線上,所以:,所以:,所以(舍去負值).由,得:,即:,所以:,所以:,所以:.故選:A6.設(shè),,且,則(
)A. B. C. D.〖答案〗A〖解析〗因為,所以,所以,即.又,,所以,即或,即(舍去).故選:7.已知數(shù)列滿足,且,則下列說法中錯誤的是(
)A.若,則是等差數(shù)列B.若,則是等差數(shù)列C.若,則是等比數(shù)列D.若,則是等比數(shù)列〖答案〗B〖解析〗對于A項:,得:,因為:,所以得:,所以:為等差數(shù)列,故A項正確;對于B項:,,所以:,,不滿足等差數(shù)列,故B項錯誤;對于C項:,,所以:,故:,數(shù)列為等比數(shù)列,故C項正確對于D項:,得:,因為:,所以:,即:,所以:為等比數(shù)列,故D項正確.故選:B.8.設(shè),,,則(
)A. B. C. D.〖答案〗D〖解析〗由題意可得,,,設(shè),,則,故當時,,單調(diào)遞增;當時,,單調(diào)遞減;因為,,,且,可得,,所以.故選:D.二、多項選擇題9.若圓與直線相切,且與圓相切于點,則圓的半徑為(
)A.5 B.3 C. D.〖答案〗BD〖解析〗圓的圓心為,半徑為1,圓與圓相切于點,則圓心在軸,設(shè)圓心為,則由題意,解得或,時,半徑為,時,半徑為,故選:BD.10.《黃帝內(nèi)經(jīng)》中十二時辰養(yǎng)生法認為:子時的睡眠對一天至關(guān)重要(子時是指23點到次日凌晨1點).相關(guān)數(shù)據(jù)表明,入睡時間越晚,沉睡時間越少,睡眠指數(shù)也就越低.根據(jù)某次的抽樣數(shù)據(jù),對早睡群體和晚睡群體的睡眠指數(shù)統(tǒng)計如圖,則下列說法錯誤的是(
)A.在睡眠指數(shù)的人群中,早睡人數(shù)多于晚睡人數(shù)B.早睡人群睡眠指數(shù)主要集中在C.早睡人群睡眠指數(shù)的極差比晚睡人群睡眠指數(shù)的極差小D.晚睡人群睡眠指數(shù)主要集中在〖答案〗ACD〖解析〗由圖知,每一組中的早睡人群占比與晚睡人群占比都是以早睡與晚睡各自的總?cè)藬?shù)為基數(shù)的,所以每一組中的早睡人數(shù)與晚睡人數(shù)不能從所占的百分比來判斷,故選項A錯誤;早睡人群睡眠指數(shù)主要集中在,晚睡人群睡眠指數(shù)主要集中在,選項B正確,選項D錯誤;早睡人群睡眠指數(shù)的極差和晚睡人群睡眠指數(shù)的極差的大小無法確定,故選項C錯誤.故選:ACD.11.如圖,四棱錐中,底面是正方形,平面,,,分別是,的中點,是棱上的動點,則(
)A.B.存在點,使平面C.存在點,使直線與所成的角為D.點到平面與平面的距離和為定值〖答案〗ABD〖解析〗依題意可知兩兩相互垂直,以為原點,建立如圖所示空間直角坐標系,設(shè),,設(shè),,所以,所以,A選項正確.點到平面與平面的距離和為為定值,D選項正確.,,設(shè)平面的法向量為,則,故可設(shè),要使平面,平面,則,解得,所以存在點,使平面,B選項正確.若直線與直線所成角為,則,,無解,所以C選項錯誤.故選:ABD12.定義在R上的函數(shù)滿足為奇函數(shù),函數(shù)滿足,若與恰有2023個交點,則下列說法正確的是(
)A. B.為的對稱軸C. D.〖答案〗BCD〖解析〗,則函數(shù)圖象關(guān)于直線對稱,B正確;是奇函數(shù),即,,則的圖象關(guān)于點對稱,,,C正確;所以,從而,所以是周期函數(shù),4是它的一個周期,,A錯;又,圖象關(guān)于點對稱,因此與的圖象的交點關(guān)于點對稱,點是它們的一個公共點,,D正確.故選:BCD.第II卷(非選擇題)三、填空題13.已知向量,,則在上的投影向量的坐標為.〖答案〗〖解析〗,,則在上的投影向量為.故〖答案〗為:14.已知雙曲線和橢圓有相同的焦點,則的最小值為.〖答案〗9〖解析〗的焦點坐標為,故,故,當且僅當,即時,等號成立,故的最小值為9.故〖答案〗為:915.已知函數(shù)的部分圖像如圖所示,且關(guān)于的不等式的解集為,,則正偶數(shù)a的最小值為.
〖答案〗4〖解析〗由題意得,所以,而,,所以,而,故,所以,又過點,所以,即,所以,則,又,即,又,則,所以,則,又,所以,則,所以,由,得,所以,解得,當時,在區(qū)間內(nèi)不存在正偶數(shù),當時,在區(qū)間內(nèi)存在1個正偶數(shù)4,所以正偶數(shù)a的最小值為.故〖答案〗為:.16.已知函數(shù)若函數(shù)有4個零點.則實數(shù)的取值范圍是.〖答案〗〖解析〗當且時,,,當且時,;當時,.故在,上單調(diào)遞減,在上單調(diào)遞增,當時,取得極小值,時,;時,由〖解析〗式可知,為奇函數(shù).畫出圖象大致如下:令得,設(shè),得關(guān)于的方程(*)恒成立,設(shè)(*)式有兩個不等實根,,當,時,即,滿足題意,當或,滿足題意,方法一:令,則或,故或,綜上,實數(shù)的取值范圍是.方法二:(*)式化為,令,易知在,上單調(diào)遞增,且,,,其圖象大致如圖:當或時,滿足或,綜上,實數(shù)的取值范圍是.四、解答題17.在中,角、、的對邊分別為、、,且,(1)求角的大??;(2)若,,求的值.(1)解:因為,由正弦定理可得,所以,,因為、,所以,,則,故.(2)解:因為,,,由余弦定理可得,則,由正弦定理可得,所以,.18.某娛樂節(jié)目闖關(guān)游戲共有三關(guān),游戲規(guī)則如下,選手依次參加第一,二,三關(guān),闖關(guān)成功可獲得的獎金分別為1000元、2000元、3000元.獎金可累加,若某關(guān)闖關(guān)成功,選手可以選擇結(jié)束闖關(guān)游戲并獲得相應獎金,也可以選擇繼續(xù)闖關(guān),若有任何一關(guān)闖關(guān)失敗,則連同前面所得獎金全部歸零,闖關(guān)游戲結(jié)束.選手小劉參加闖關(guān)游戲,已知他第一,二,三關(guān)闖關(guān)成功的概率分別為,,.第一關(guān)闖關(guān)成功選擇繼續(xù)闖關(guān)的概率為,第二關(guān)闖關(guān)成功選擇繼續(xù)闖關(guān)的概率為,且每關(guān)闖關(guān)成功與否互不影響.(1)求小劉第一關(guān)闖關(guān)成功,但所得總獎金為零的概率;(2)設(shè)小劉所得獎金為X,求隨機變量X的分布列及數(shù)學期望.解:(1)由題意,要使小劉第一關(guān)闖關(guān)成功,但所得總獎金為零,選擇闖第二關(guān)且失敗,或選擇闖第二關(guān)且成功,又選擇闖第三關(guān)且失敗,所以小劉第一關(guān)闖關(guān)成功,但所得總獎金為零的概率.(2)由題意,,且,,,,X的分布列如下:0100030006000元.19.在數(shù)列中,,是的前n項和,且數(shù)列是公差為的等差數(shù)列.(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和.解:(1)由已知得,,所以,①當時,,②,得,也符合該式,所以.(2)由(1)得,所以,③,④,得.故.20.已知矩形ABCD中,點E在邊CD上,且.現(xiàn)將沿AE向上翻折,使點D到點P的位置,構(gòu)成如圖所示的四棱錐.
(1)若點F在線段AP上,且平面PBC,求的值;(2)若,求銳二面角的余弦值.解:(1)點為線段上靠近點的三等分點,滿足平面PBC,證明如下:如圖,過點作交于點,連接,則,
又,,所以.因為,所以,所以四邊形為平行四邊形,有,又平面,平面,所以平面.此時有.(2),為等腰直角三角形,,,,.取的中點,以為坐標原點,為軸建立如圖所示的空間直角坐標系,設(shè),,,,
則,,因為,,所以,解得,則,,,設(shè)平面的法向量為,則,不妨取,則,,設(shè)平面的一個法向量為,則,則銳二面角的的余弦值為.21.在中,已知點邊上的中線長與邊上的中線長之和為,記的重心G的軌跡為曲線C.(1)求C的方程;(2)若圓,過坐標原點O且與y軸不重合的任意直線與圓相交于點,直線與曲線的另一個交點分別是點,求面積的最大值.解:(1)設(shè)的中點為S,的中點為T,所以,,所以,所以,所以G點的軌跡是以為焦點,長軸長的橢圓.所以,所以,,所以曲線C的方程為.
.
(2)設(shè)直線為(不妨設(shè)),設(shè),,
所以,,,解得(舍去),則,由于AB是單位圓的直徑,所以,所以直線EN的斜率為,直線EN的方程為,同理可求得,則,由上述分析可知,,而,所以,所以,令,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手表零售購銷協(xié)議
- 太陽能電池組件采購協(xié)議
- 鋼材購銷合同模版
- 招商服務合同共贏模式
- 尿素采購協(xié)議書
- 茅臺酒品牌使用協(xié)議
- 月嫂合同的簽訂與解除
- 防水工程設(shè)計變更費合同
- 低碳環(huán)保演講稿四篇
- 生物農(nóng)資品牌購銷協(xié)議
- (正式版)SHT 3045-2024 石油化工管式爐熱效率設(shè)計計算方法
- (2024年)保安培訓圖文課件
- 《數(shù)字圖像處理》題庫1(選擇題、填空題、判斷題)試題+答案
- 智能網(wǎng)聯(lián)車路云協(xié)同系統(tǒng)架構(gòu)與關(guān)鍵技術(shù)研究綜述
- 2023流域超標準洪水防御預案編制導則
- 高等數(shù)學(高職教育)全套教學課件
- 瑞幸咖啡品牌營銷策略研究報告
- 統(tǒng)編版語文八年級下冊全冊大單元整體教學設(shè)計表格式教案
- 蒙牛學生奶培訓課件
- 檢驗原始記錄培訓課件
- 少先隊小提案
評論
0/150
提交評論