新教材人教A版高中數(shù)學(xué)必修第二冊(cè)簡(jiǎn)單隨機(jī)抽樣5種??碱}型 同步講義_第1頁
新教材人教A版高中數(shù)學(xué)必修第二冊(cè)簡(jiǎn)單隨機(jī)抽樣5種??碱}型 同步講義_第2頁
新教材人教A版高中數(shù)學(xué)必修第二冊(cè)簡(jiǎn)單隨機(jī)抽樣5種??碱}型 同步講義_第3頁
新教材人教A版高中數(shù)學(xué)必修第二冊(cè)簡(jiǎn)單隨機(jī)抽樣5種??碱}型 同步講義_第4頁
新教材人教A版高中數(shù)學(xué)必修第二冊(cè)簡(jiǎn)單隨機(jī)抽樣5種??碱}型 同步講義_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

37、簡(jiǎn)單隨機(jī)抽樣5種??碱}型

【考點(diǎn)分析】

考點(diǎn)一:全面調(diào)查(普查)、抽樣調(diào)查

①全面調(diào)查(普查):對(duì)每一個(gè)調(diào)查對(duì)象都進(jìn)行調(diào)查的方法,稱為全面調(diào)查,又稱普查.

總體:調(diào)查對(duì)象的全體.

個(gè)體:組成總體的每一個(gè)調(diào)查對(duì)象.

②抽樣調(diào)查:根據(jù)一定目的,從總體中抽取一部分個(gè)體進(jìn)行調(diào)查,并以此為依據(jù)對(duì)總體的情

況作出估計(jì)和推斷的調(diào)查方法.

樣本:從總體中抽取的那部分個(gè)體.

樣本量:樣本中包含的個(gè)體數(shù).

考點(diǎn)二:簡(jiǎn)單隨機(jī)抽樣

①定義:一般地,設(shè)一個(gè)總體含有MN為正整數(shù))個(gè)個(gè)體,從中逐個(gè)抽取"(1≤"<M個(gè)個(gè)體作

為樣本.如果抽取是放回的,且每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的概率都相等,我們把這

樣的抽樣方法叫做放回簡(jiǎn)單隨機(jī)抽樣;如果抽取是不放回的,且每次抽取時(shí)總體內(nèi)未進(jìn)入樣

本的各個(gè)個(gè)體被抽到的概率都相等,我們把這樣的抽樣方法叫做不放回簡(jiǎn)單隨機(jī)抽樣.放回簡(jiǎn)

單隨機(jī)抽樣和不放回簡(jiǎn)單隨機(jī)抽樣統(tǒng)稱為簡(jiǎn)單隨機(jī)抽樣,通過簡(jiǎn)單隨機(jī)抽樣獲得的樣本稱為

簡(jiǎn)單隨機(jī)樣本.

考點(diǎn)三:抽簽法、隨機(jī)數(shù)法

①抽簽法:把總體中的N個(gè)個(gè)體編號(hào),把所有編號(hào)寫在外觀、質(zhì)地等無差別的小紙片(也可以

是卡片、小球等)上作為號(hào)簽,將號(hào)簽放在一個(gè)不透明容器中,充分?jǐn)嚢韬?,每次從中不放?/p>

地抽取一個(gè)號(hào)簽,連續(xù)抽取〃次,使與號(hào)簽上的編號(hào)對(duì)應(yīng)的個(gè)體進(jìn)入樣本,就得到一個(gè)容量

為〃的樣本.

②隨機(jī)數(shù)法

1.用隨機(jī)試驗(yàn)生成隨機(jī)數(shù)

2.用信息技術(shù)生成隨機(jī)數(shù):①用計(jì)算器生成隨機(jī)數(shù);②用電子表格軟件生成隨機(jī)數(shù);③用R

統(tǒng)計(jì)軟件生成隨機(jī)數(shù).

考點(diǎn)四:分層隨機(jī)抽樣

一般地,按一個(gè)或多個(gè)變量把總體劃分成若干個(gè)子總體,每個(gè)個(gè)體屬于且僅屬于一個(gè)子總體,

在每個(gè)子總體中獨(dú)立地進(jìn)行簡(jiǎn)單隨機(jī)抽樣,再把所有子總體中抽取的樣本合在一起作為總樣

本,這樣的抽樣方法稱為分層隨機(jī)抽樣.

1.每一個(gè)子總體稱為層,在分層隨機(jī)抽樣中,如果每層樣本量都與層的大小成比例,那么稱

這種樣本量的分配方式為比例分配.

2.如果總體分為2層,兩層包含的個(gè)體數(shù)分別為M,N,兩層抽取的樣本量分別為如小兩

層的樣本平均數(shù)分別為X,y,兩層的總體平均數(shù)分別為X,y,總體平均數(shù)為W,樣

本平均數(shù)為K.

_In_〃_____M______N_

則W=,"+"X+m+ny?W=M+NX+M+N丫?

3.在比例分配的分層隨機(jī)抽樣中,可以直接用樣本平均數(shù)W估計(jì)總體平均數(shù)而.

考點(diǎn)五:獲取數(shù)據(jù)的途徑

獲取數(shù)據(jù)的基本途徑有通過調(diào)查獲取數(shù)據(jù)、通過試驗(yàn)獲取數(shù)據(jù)、通過觀察獲取數(shù)據(jù)、通過查

詢獲得數(shù)據(jù)等.

【題型目錄】

題型一:簡(jiǎn)單隨機(jī)抽樣概念的理解

題型二:隨機(jī)數(shù)表法

題型三:簡(jiǎn)單隨機(jī)抽樣的概率

題型四:用樣本估計(jì)總體

題型五:分層隨機(jī)抽樣

【典型例題】

題型一:簡(jiǎn)單隨機(jī)抽樣概念的理解

【例H”知名雪糕3ΓC放1小時(shí)不化”事件曝光后,某市市場(chǎng)監(jiān)管局從所管轄十五中、十七

中、常青一中三校周邊超市在售的28種雪糕中抽取了18種雪糕,對(duì)其質(zhì)量進(jìn)行了檢查.在

這個(gè)問題中,18是()

A.總體B.個(gè)體C.樣本D.樣本量

【答案】D

【分析】根據(jù)抽樣調(diào)查中總體、個(gè)體、樣本、樣本容量的概念,即可判斷.

【詳解】總體:我們把與所研究問題有關(guān)的全體對(duì)象稱為總體;

個(gè)體:把組成總體的每個(gè)對(duì)象稱為個(gè)體;

樣本:從總體中,抽取的一部分個(gè)體組成了一個(gè)樣本;

樣本量:樣本中個(gè)體的個(gè)數(shù)叫樣本容量,其不帶單位;

在售的28種雪糕中抽取了18種雪糕,對(duì)其質(zhì)量進(jìn)行了檢查,在這個(gè)問題中,28種雪糕是總

體,每--種雪糕是個(gè)體,18種雪糕是樣本,18是樣本量;

【例2】下列抽取樣本的方式屬于簡(jiǎn)單隨機(jī)抽樣的個(gè)數(shù)為()

①從無限多個(gè)個(gè)體中抽取IOO個(gè)個(gè)體作為樣本.

②從20件玩具中一次性抽取3件進(jìn)行質(zhì)量檢驗(yàn).

③某班有56個(gè)同學(xué),指定個(gè)子最高的5名同學(xué)參加學(xué)校組織的籃球賽.

④盒子中共有80個(gè)零件,從中選出5個(gè)零件進(jìn)行質(zhì)量檢驗(yàn),在抽樣操作時(shí),從中任意拿出一

個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后再把它放回盒子里.

A.OB.1C.2D.3

【答案】A

【分析】按照簡(jiǎn)單隨機(jī)抽樣的定義判斷即可.

【詳解】解:①從無限多個(gè)個(gè)體中抽取100個(gè)個(gè)體作為樣本,不滿足總體個(gè)數(shù)為有限個(gè);

②從20件玩具中一次性抽取3件進(jìn)行質(zhì)量檢驗(yàn),不滿足逐個(gè)抽?。?/p>

③某班有56個(gè)同學(xué),指定個(gè)子最高的5名同學(xué)參加學(xué)校組織的籃球賽,不滿足隨機(jī)抽?。?/p>

④盒子中共有80個(gè)零件,從中選出5個(gè)零件進(jìn)行質(zhì)量檢驗(yàn),

在抽樣操作時(shí),從中任意拿出一個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后再把它放回盒子里,不滿足無放回抽

取.

綜上可得以上均不滿足簡(jiǎn)單隨機(jī)抽樣的定義,

【例3】下列抽樣試驗(yàn)中,適合用抽簽法的是()

A.從某廠生產(chǎn)的3000件產(chǎn)品中抽取600件進(jìn)行質(zhì)量檢驗(yàn)

B.從某廠生產(chǎn)的兩箱(每箱15件)產(chǎn)品中抽取6件進(jìn)行質(zhì)量檢驗(yàn)

C.從甲、乙兩廠生產(chǎn)的兩箱(每箱15件)產(chǎn)品中抽取6件進(jìn)行質(zhì)量檢驗(yàn)

D.從某廠生產(chǎn)的3000件產(chǎn)品中抽取10件進(jìn)行質(zhì)量檢驗(yàn)

【答案】B

【分析】根據(jù)抽簽法的特征:個(gè)體數(shù)以及樣本容量較小,且易均勻混合,即可結(jié)合選項(xiàng)求解.

【詳解】選項(xiàng)A中總體中的個(gè)體數(shù)較大,樣本容量也較大,不適合用抽簽法;

選項(xiàng)B中總體中的個(gè)體數(shù)較小,樣本容量也較小,且同廠生產(chǎn)的兩箱產(chǎn)品可視為攪拌均勻了,

可用抽簽法;

選項(xiàng)C中甲、乙兩廠生產(chǎn)的兩箱產(chǎn)品質(zhì)量可能差別較大,不能滿足攪拌均勻的條件,不能用

抽簽法;

選項(xiàng)D中總體中的個(gè)體數(shù)較大,不適合用抽簽法.

【例4】某市場(chǎng)監(jiān)管局從所管轄的某超市在售的40種冷凍飲品中抽取了20種冷凍飲品,對(duì)

其質(zhì)量進(jìn)行了檢查,則()

A.該市場(chǎng)監(jiān)管局的調(diào)查方法是普查B.樣本容量是該超市的20種冷凍飲品

C.總體是超市在售的40種冷凍飲品D.樣本的個(gè)體是20種冷凍飲品中每種冷凍飲

品的質(zhì)量

【答案】D

【分析】根據(jù)隨機(jī)抽樣概念求解即可.

【詳解】該市場(chǎng)監(jiān)管局的調(diào)查方法是隨機(jī)抽樣,總體是超市在售的40種冷凍飲品的質(zhì)量,

樣本的個(gè)體是20種冷凍飲品中每種冷凍飲品的質(zhì)量,樣本容量是20.

【例5】(多選題)2022年5月某市??脊灿?8000多名學(xué)生參加,教務(wù)處為了了解本校2189

名考生的數(shù)學(xué)成績(jī),從中抽取300名考生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,則以下說法中正確的是

()

A.2189名考生是總體的一個(gè)樣本B.2189名考生的數(shù)學(xué)成績(jī)是總體

C.樣本容量是300D.68000多名考生的數(shù)學(xué)成績(jī)是總體

【答案】BC

【分析】根據(jù)總體、個(gè)體、樣本、樣本容量的概念,可以判斷BC正確.

【詳解】總體是2189名考生的數(shù)學(xué)成績(jī),樣本是抽取的300名考生的數(shù)學(xué)成績(jī).樣本容量是

3∞.

【題型專練】

1.有甲、乙兩箱籃球,其中甲箱27個(gè),乙箱9個(gè),現(xiàn)從這兩箱籃球中隨機(jī)抽取4個(gè),甲箱

抽3個(gè),乙箱抽1個(gè).下列說法不正確的是()

A.總體是36個(gè)籃球B.樣本是4個(gè)籃球

C.樣本容量是4D.每個(gè)籃球被抽到的可能性不同

【答案】D

【分析】利用樣本、樣本容量、總體的意義,逐項(xiàng)分析判斷作答.

【詳解】依題意,總體是36個(gè)籃球,樣本是4個(gè)籃球,樣本容量是4,選項(xiàng)A,B,C都正

確;

311

甲箱抽3個(gè),每個(gè)球被抽到的概率為力=§,乙箱抽I個(gè),每個(gè)球被抽到的概率為則每

個(gè)籃球被抽到的可能性相同,D不正確.

2.下列抽樣方法是簡(jiǎn)單隨機(jī)抽樣的是()

A.某醫(yī)院從200名醫(yī)生中,挑選出50名最優(yōu)秀的醫(yī)生去參加抗疫活動(dòng)

B.從10個(gè)手機(jī)中逐個(gè)不放回地隨機(jī)抽取2個(gè)進(jìn)行質(zhì)量檢驗(yàn)

C.從空間直角坐標(biāo)系中抽取10個(gè)點(diǎn)作為樣本

D.飲料公司從倉庫中的500箱飲料中一次性抽取前10箱進(jìn)行質(zhì)量檢查

【答案】B

【分析】根據(jù)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)逐項(xiàng)判斷可得答案.

【詳解】對(duì)于A,某醫(yī)院從200名醫(yī)生中,挑選出50名最優(yōu)秀的醫(yī)生去參加抗疫活動(dòng),每個(gè)

人被抽到的機(jī)會(huì)不相等,故錯(cuò)誤;

對(duì)于B,從10個(gè)手機(jī)中逐個(gè)不放回地隨機(jī)抽取2個(gè)進(jìn)行質(zhì)量檢驗(yàn),是簡(jiǎn)單隨機(jī)抽樣,故正確:

對(duì)于C,從空間直角坐標(biāo)系中抽取10個(gè)點(diǎn)作為樣本,由于被抽取的樣本的總體個(gè)數(shù)是無限的,

所以不是簡(jiǎn)單隨機(jī)抽樣,故錯(cuò)誤;

對(duì)于D,飲料公司從倉庫中的500箱飲料中一次性抽取前10箱進(jìn)行質(zhì)量檢查,不是逐個(gè)抽取,

所以不是簡(jiǎn)單隨機(jī)抽樣,故錯(cuò)誤.

3.(多選題)下列抽樣方法是簡(jiǎn)單隨機(jī)抽樣的是()

A.質(zhì)檢員從50個(gè)零件中一次性抽取5個(gè)做質(zhì)量檢驗(yàn)

B.“隔空不隔愛,停課不停學(xué)”,網(wǎng)課上,李老師對(duì)全班45名學(xué)生中點(diǎn)名表揚(yáng)了3名發(fā)言積

極的

C.老師要求學(xué)生從實(shí)數(shù)集中逐個(gè)抽取10個(gè)分析奇偶性

D.某運(yùn)動(dòng)員從8條跑道中隨機(jī)抽取一條跑道試跑

【答案】AD

【分析】根據(jù)簡(jiǎn)單隨機(jī)抽樣的定義,逐項(xiàng)分析判斷即可.

【詳解】選項(xiàng)A:“一次性”抽取與逐個(gè)不放回的抽取等價(jià),符合不放回簡(jiǎn)單隨機(jī)抽樣要求,

故正確;

選項(xiàng)B:老師表揚(yáng)的是發(fā)言積極的,對(duì)每一個(gè)個(gè)體而言,不具備“等可能性”,故錯(cuò)誤;

選項(xiàng)C:因?yàn)榭傮w容量是無限的,不符合簡(jiǎn)單隨機(jī)抽樣要求,故錯(cuò)誤;

選項(xiàng)D:8條跑道,抽取1條,總體有限,每個(gè)個(gè)體被抽到的機(jī)會(huì)均等,是簡(jiǎn)單隨機(jī)抽樣,

故正確.

4.關(guān)于簡(jiǎn)單隨機(jī)抽樣,下列說法正確的是()

A.要求被抽取樣本的總體的個(gè)體數(shù)有限B.從總體中逐個(gè)進(jìn)行抽取

C.一種有放回抽樣D.一種等可能抽樣

【答案】ABD

【分析】由簡(jiǎn)單隨機(jī)抽樣的概念及特征判斷.

【詳解】解:由簡(jiǎn)單隨機(jī)抽樣的概念及特征可知ABD正確.

題型二:隨機(jī)數(shù)表法

【例1】已知總體容量為106,若用隨機(jī)數(shù)表法抽取一個(gè)容量為10的樣本,下面對(duì)總體的編

號(hào)正確的是()

A.1,2,106B.0,1,2,105

C.00,Ob105D.000,()01,105

【答案】D

【分析】根據(jù)隨機(jī)數(shù)表法的抽取原則判斷即可.

【詳解】由隨機(jī)數(shù)表法抽取原則可知對(duì)總體的編號(hào)為(X)0,001,105.

【例2】從某班60名同學(xué)中選出5人參加戶外活動(dòng),利用隨機(jī)數(shù)表法抽取樣本時(shí),先將60名

同學(xué)按01,02,60進(jìn)行編號(hào),然后從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始從左往

右依次選取兩個(gè)數(shù)字,則選出的第5個(gè)同學(xué)的編號(hào)為(注:表為隨機(jī)數(shù)表的第1行與第2行)()

03474373863696473661469836716297

74246292428114572042533237321676

A.24B.36C.46D.47

【答案】A

【分析】從第一行第5歹U,兩個(gè)兩個(gè)數(shù)字取數(shù),前面出現(xiàn)過的或者大于60的剔除,剩下的依

次排列即得.

【詳解】按題意,從第一行第5歹U,兩個(gè)兩個(gè)數(shù)字取數(shù),抽樣編號(hào)依次為43,36,47,46,

24,第5個(gè)是24,

【例3】某工廠利用隨機(jī)數(shù)表對(duì)生產(chǎn)的700個(gè)零件進(jìn)行抽樣測(cè)試,先將700個(gè)零件進(jìn)行編號(hào),

001,002,.........699,700.從中抽取70個(gè)樣本,下圖提供隨機(jī)數(shù)表的第4行到第6行,若從表中

第5行第6列開始向右讀取數(shù)據(jù),則得到的第6個(gè)樣本編號(hào)是()

32211834297864540732524206443812234356773578905642

84421253313457860736253007328623457889072368960804

32567808436789535577348994837522535578324577892345

A.623B.328C.253D.007

【答案】A

【分析】根據(jù)隨機(jī)數(shù)表法依次讀數(shù)即可.

【詳解】解:從第5行第6列開始向又讀取數(shù)據(jù),

第一個(gè)數(shù)為253,第二個(gè)數(shù)是313,第三個(gè)數(shù)是457,

下一個(gè)數(shù)是860,不符合要求,下一個(gè)數(shù)是736,不符合要求,下一個(gè)是253,重復(fù),

第四個(gè)是007,第五個(gè)是328,第六個(gè)是623.

【例4】某工廠利用隨機(jī)數(shù)表對(duì)生產(chǎn)的700個(gè)零件進(jìn)行抽樣測(cè)試,先將700個(gè)零件進(jìn)行編號(hào)

001,002............699,700,從中抽取70個(gè)樣本,下圖提供隨機(jī)數(shù)表的第4行到第6行,若

從表中第5行第6列開始向右讀取數(shù)據(jù),則得到的第8個(gè)樣本編號(hào)是()

33211834297864560732524206443812234356773578905642

84421253313457860732253007328523457889072368960804

32567808436789535577348994837522535578324577892345

A.623B.368C.253D.072

【答案】B

【分析】根據(jù)給定條件,利用隨機(jī)數(shù)表法按要求每3個(gè)數(shù)為一個(gè)編號(hào),不在編號(hào)范圍內(nèi)或重

復(fù)的排除掉,讀數(shù)即ML

【詳解】從表中第5行第6列開始向右讀取數(shù)據(jù),得到的前8個(gè)編號(hào)分別是:253,313,457,

860(舍),732(舍),253(舍),

007,328,523,457(舍),889(舍),072,368,則得到的第8個(gè)樣本編號(hào)是368.

【題型專練】

I.某工廠的質(zhì)檢人員對(duì)生產(chǎn)的100件產(chǎn)品采用隨機(jī)數(shù)表法抽取10件進(jìn)行檢查,對(duì)100件產(chǎn)

品采用下面的編號(hào)方法:①1,2,3,100;②001,002,100;③00,01,02,

99;④01,02,03,…,100.其中正確的序號(hào)是()

A.②③④B.③④C.②③D.①②

【答案】C

【分析】根據(jù)隨機(jī)數(shù)表法的的定義和編號(hào)規(guī)則,即可求解.

【詳解】根據(jù)隨機(jī)數(shù)表法的步驟可知,①④編號(hào)位數(shù)不統(tǒng)一,②③的編號(hào)數(shù)字統(tǒng)一,所以②③

正確.

2.中國(guó)福利彩票“雙色球”中的紅色球號(hào)碼區(qū)的33個(gè)號(hào)碼分別為01,02,33.一位彩民用

隨機(jī)數(shù)法從紅色球號(hào)碼區(qū)的33個(gè)號(hào)碼中選取6個(gè)號(hào)碼.選取方法是從下面的隨機(jī)數(shù)表中第1

行第6列開始,從左向右讀數(shù),則依次選出來的第4個(gè)號(hào)碼為.

4954435482173793237887352096438426349164

8442175331572455068877047447672176335025

【答案】16

【分析】利用隨機(jī)數(shù)表法進(jìn)行抽樣,即可得到答案.

【詳解】利用隨機(jī)數(shù)表法進(jìn)行簡(jiǎn)單隨機(jī)抽樣,

依次選出來的號(hào)碼依次為21,32,09,16,第四個(gè)是16.

3.嫦娥九號(hào)的成功發(fā)射,實(shí)現(xiàn)了中國(guó)航天史上的五個(gè)“首次”,某中學(xué)為此舉行了“講好航天

故事'’演講比賽.若將報(bào)名的30位同學(xué)編號(hào)為01,02,30,利用下面的隨機(jī)數(shù)表來決定

他們的出場(chǎng)順序,選取方法是從隨機(jī)數(shù)表第1行的第4列和第5列數(shù)字開始由左到右依次選

取兩個(gè)數(shù)字,重復(fù)的跳過,則選出來的第7個(gè)個(gè)體的編號(hào)為.

45673212123102OI0452152001125129

32049234493582003623486969387481

【答案】12

【分析】根據(jù)隨機(jī)數(shù)表法求得正確答案.

【詳解】依題意可知,選出的個(gè)體編號(hào)為:21,23,10,20,11,25,12,等等,

所以選出來的第7個(gè)個(gè)體的編號(hào)為12.

4.要考察某種品牌的850顆種子的發(fā)芽率,從中抽取50顆種子進(jìn)行實(shí)驗(yàn),利用隨機(jī)數(shù)表法

抽取種子,先將850顆種子按001,002,...?850進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第3行第6列

的數(shù)開始向右讀,請(qǐng)依次寫出最先檢驗(yàn)的4顆種子的編號(hào):.

注:下面抽取了隨機(jī)數(shù)表第1行至第5行.

03474373863696473661469863716233261680456011141095

977424676242811457204253323732270736075?2451798973

16766227665650267107329079785313553858598897541410

12568599269696682731050372931557121014218826498176

55595635643854824622316243099006184432532383013030

【答案】227,665,650,267.

【分析】找到第3行第6列的數(shù)2,每3個(gè)數(shù)組成一個(gè)數(shù)字,如果數(shù)字在001至850之間(包

含001和850),即符合要求,從而找到前4個(gè)符合要求的數(shù)字即可.

【詳解】從隨機(jī)數(shù)表第3行第6列的數(shù)2開始向右讀第一個(gè)小于850的數(shù)字是227,第二個(gè)

數(shù)字是665,第三個(gè)數(shù)字是650,第四個(gè)數(shù)字是267,均符合題意.

題型三:簡(jiǎn)單隨機(jī)抽樣的概率

【例1】為了了解某小區(qū)5000戶居民接種新冠疫苗情況,從中抽取了100戶居民進(jìn)行調(diào)查.

該小區(qū)每位居民被抽到的可能性為()

A.—B.—C.------D.------

10501005000

【答案】B

【分析】根據(jù)每個(gè)個(gè)體被抽到可能性都是相同的,即可計(jì)算得答案.

【詳解】由題意可知為了了解某小區(qū)5000戶居民接種新冠疫苗情況,

從中抽取了100戶居民進(jìn)行調(diào)查,該小區(qū)每位居民被抽到的可能性都是相同的,

故可能為=L

500050

【例2】利用簡(jiǎn)單隨機(jī)抽樣,從〃個(gè)個(gè)體中抽取一個(gè)容量為10的樣本.若抽完第一個(gè)個(gè)體后,

余下的每個(gè)個(gè)體被抽到的機(jī)會(huì)為f則在整個(gè)抽樣過程中,每個(gè)個(gè)體被抽到的機(jī)會(huì)為()

【答案】D

【分析】根據(jù)等可能事件的概率計(jì)算求得〃,即可求解.

【詳解】由題意可得々=!,故〃=37,所以每個(gè)個(gè)體被抽到的機(jī)會(huì)為工,

M-I437

【例3】從52名學(xué)生中選取5名學(xué)生參加“希望杯”全國(guó)數(shù)學(xué)邀請(qǐng)賽,若采用簡(jiǎn)單隨機(jī)抽樣抽

取,則每人入選的可能性().

A.都相等,且為白B.都相等,且為,C.都相等,且為卷D,都不相等

【答案】C

【分析】根據(jù)簡(jiǎn)單隨機(jī)抽樣的性質(zhì),分析即可的答案.

【詳解】對(duì)于簡(jiǎn)單隨機(jī)抽樣,在抽樣過程中,每一個(gè)個(gè)體被抽到的概率相同,

因此每人入選可能相同,且為康.

【例4】在放回簡(jiǎn)單隨機(jī)抽樣中,每次抽取時(shí)某一個(gè)個(gè)體被抽到的概率()

A.與第幾次抽樣無關(guān),第一次抽到的概率要大些

B.與第幾次抽樣無關(guān),每次抽到的概率都相等

C.與第幾次抽樣有關(guān),最后一次抽到的概率要大些

D.每個(gè)個(gè)體被抽到的概率無法確定

【答案】B

【分析】根據(jù)簡(jiǎn)單隨機(jī)抽樣中每個(gè)個(gè)體被抽到的可能性相同判斷即可

【詳解】在放回簡(jiǎn)單隨機(jī)抽樣中,每次抽取時(shí)各個(gè)個(gè)體被抽到的概率都相等,與第幾次抽樣

無關(guān).

【例5】管理人員從一池塘內(nèi)隨機(jī)撈出40條魚,做上標(biāo)記后放回池塘.10天后,又從池塘內(nèi)

隨機(jī)撈出70條魚,其中有標(biāo)記的有2條.根據(jù)以上數(shù)據(jù)可以估計(jì)該池塘內(nèi)魚的總條數(shù)是()

A.2800B.1800C.1400D.1200

【答案】C

【分析】由從池塘內(nèi)撈出70條魚,其中有標(biāo)記的有2條,可得所有池塘中有標(biāo)記的魚的概率,

結(jié)合池塘內(nèi)具有標(biāo)記的魚一共有40條魚,按照比例即得解.

【詳解】設(shè)估計(jì)該池塘內(nèi)魚的總條數(shù)為“,

由題意,得從池塘內(nèi)撈出70條魚,其中有標(biāo)記的有2條,

所有池塘中有標(biāo)記的魚的概率為:???,

又因?yàn)槌靥羶?nèi)具有標(biāo)記的魚一共有40條魚,

401

所以一=——,解得〃=35x40=1400,

n35

即估計(jì)該池塘內(nèi)共有1400條魚.

【題型專練】

1.在一次羽毛球男子單打比賽中,運(yùn)動(dòng)員甲、乙進(jìn)入了決賽.比賽規(guī)則是三局兩勝制.根據(jù)以往

戰(zhàn)績(jī),每局比賽甲獲勝概率為0.4,乙獲勝概率為06利用計(jì)算機(jī)模擬實(shí)驗(yàn),產(chǎn)生[1,5]內(nèi)的整

數(shù)隨機(jī)數(shù),當(dāng)出現(xiàn)隨機(jī)數(shù)1或2時(shí),表示一局比賽甲獲勝,現(xiàn)計(jì)算機(jī)產(chǎn)生15組隨機(jī)數(shù)為:423,

231,344,114,534,123,354,535,425,232,233,351,122,153,533,據(jù)此估計(jì)甲

獲得冠軍的概率為()

14n44-1c2

A.—B.C.-D.一

2512535

【答案】C

【分析】根據(jù)題意,由隨機(jī)數(shù)組來確定勝負(fù)情況,根據(jù)15組數(shù)據(jù)中滿足條件的數(shù)組個(gè)數(shù),除

以總數(shù)即可得解.

【詳解】由計(jì)算機(jī)產(chǎn)生的15組數(shù)據(jù)中,

甲獲得冠軍的數(shù)據(jù)有231,114,123,232,122,共5組,

據(jù)此估計(jì)甲獲得冠軍的概率為K=g,

2.為了解高三學(xué)生對(duì)“社會(huì)主義核心價(jià)值觀”的學(xué)習(xí)情況,現(xiàn)從全年級(jí)1004人中抽取50人參

加測(cè)試.首先由簡(jiǎn)單隨機(jī)抽樣剔除4名學(xué)生,學(xué)生甲在這4名學(xué)生之中,然后剩余的IoOO名學(xué)

生再用分層抽樣的方法抽取,把Io(X)名學(xué)生隨機(jī)分成50組,每組20人,學(xué)生乙被分在第四

組,則()

A.甲入選的概率為0且乙入選的概率為去

B.甲與乙入選的概率不相等且乙入選的概率小于甲入選的概率

C.這1004名學(xué)生入選的概率都相等,且為酢

D.這1004名學(xué)生入選的概率都相等,且為《

【答案】C

【分析】根據(jù)隨機(jī)抽樣對(duì)于每個(gè)人都是公平的,可計(jì)算出這1004名學(xué)生每人入選的概率,即

可得出合適的選項(xiàng).

【詳解】由于隨機(jī)抽樣對(duì)于每個(gè)人都是公平的,因此,這1004名學(xué)生入選的概率都相等,口

“5025

為----=---.

1004502

ABD選項(xiàng)均錯(cuò),C對(duì).

3.利用簡(jiǎn)單隨機(jī)抽樣,從“個(gè)個(gè)體中抽取一個(gè)容量為10的樣本.若第二次抽取時(shí),余下的

每個(gè)個(gè)體被抽到的概率為g,則在整個(gè)抽樣過程中,每個(gè)個(gè)體被抽到的概率為()

【答案】C

【分析】根據(jù)題意計(jì)算出總數(shù)"即可.

91

【詳解】根據(jù)題意,-?-??,解得〃=28.

n-?3

故在整個(gè)抽樣過程中每個(gè)個(gè)體被抽到的概率為

4.某大型節(jié)目要從2020名觀眾中抽取50名幸運(yùn)觀眾,先用簡(jiǎn)單隨機(jī)抽樣從2020人中剔除

20人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2020人中,每個(gè)人被抽到的可

能性()

C.都相等,且為3D.都相等,且為《

A.均不相等B.不全相等

【答案】C

【解析】根據(jù)隨機(jī)抽樣等可能抽取的性質(zhì)即可求解.

【詳解】解:由隨機(jī)抽樣是等可能抽取,可知每個(gè)個(gè)體被抽取的可能性相等,

故抽取的概率為瑞=和

5.為了解高三學(xué)生對(duì)“社會(huì)主義核心價(jià)值觀”的學(xué)習(xí)情況,現(xiàn)從全年級(jí)1004人中抽取50人參

加測(cè)試.首先由簡(jiǎn)單隨機(jī)抽樣剔除4名學(xué)生,然后剩余的IOoO名學(xué)生再用系統(tǒng)抽樣的方法抽

取,則()

A.每個(gè)學(xué)生入選的概率均不相等B.每個(gè)學(xué)生入選的概率可能為0

C.每個(gè)學(xué)生入選的概率都相等,且為范25D.每個(gè)學(xué)生入選的概率都相等,且為方1

【答案】C

【分析】根據(jù)簡(jiǎn)單隨機(jī)抽和系統(tǒng)抽樣都是等可能抽樣以及概率公式計(jì)算可得結(jié)果.

【詳解】因?yàn)楹?jiǎn)單隨機(jī)抽和系統(tǒng)抽樣都是等可能抽樣,所以每個(gè)學(xué)生入選的概率都相等,且

入選的概率等于蒜=得

6.一個(gè)總體含有100個(gè)個(gè)體,以簡(jiǎn)單隨機(jī)抽樣方式從該總體中抽取一個(gè)容量為5的樣本,則

指定的某個(gè)個(gè)體被抽到的概率為.

【答案】?

【分析】由簡(jiǎn)單隨機(jī)抽樣的定義,每個(gè)個(gè)體被抽到的概率是一樣的,結(jié)合容量,即可求得概

率.

【詳解】由題意得,每個(gè)個(gè)體被抽到的概率為卷,以簡(jiǎn)單隨機(jī)抽樣方式從該總體中抽取一

個(gè)容量為5的樣本,則指定的某個(gè)個(gè)體被抽到的概率為±x5=±.

IOO20

7.某校高一共有10個(gè)班,編號(hào)分別為01,02,10,現(xiàn)用抽簽法從中抽取3個(gè)班進(jìn)行調(diào)

查,設(shè)高一(5)班被抽到的可能性為α,高一(6)班被抽到的可能性為6,則α=:

b=.

33

【答案】—##0.3—##0.3

【分析】利用簡(jiǎn)單隨機(jī)抽樣的等可能性,即得解

【詳解】由簡(jiǎn)單隨機(jī)抽樣的定義,知每個(gè)個(gè)體被抽到的可能性相等,

3

故高一(5)班和高一(6)班被抽到的可能性均為7z.

故α=?,力=3

10

題型四:用樣本估計(jì)總體

【例1】為了估計(jì)某自然保護(hù)區(qū)中天鵝的數(shù)量,可以使用以下方法:先從該保護(hù)區(qū)中捕出一

定數(shù)量的天鵝,例如200只,給每只天鵝做上記號(hào),不影響其存活,然后放回保護(hù)區(qū),經(jīng)過

適當(dāng)?shù)臅r(shí)間,讓其和保護(hù)區(qū)中其余的天鵝充分混合;再從保護(hù)區(qū)中捕出一定數(shù)量的天鵝,例

如150只,查看其中有記號(hào)的天鵝,設(shè)有20只.根據(jù)上述數(shù)據(jù),估計(jì)該自然保護(hù)區(qū)中天鵝的

數(shù)量為()

A.4000B.3000C.1500D.750

【答案】C

【分析】根據(jù)簡(jiǎn)單隨機(jī)抽樣估計(jì)總體,列出方程即可得解.

【詳解】設(shè)該自然保護(hù)區(qū)中天鵝的數(shù)量為孫則?您00=當(dāng)20,解得”=1500?

n150

【例2】我國(guó)古代數(shù)學(xué)名著《數(shù)書九章》中有“米谷粒分”題:糧倉開倉收糧,有人送來米1534

石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒.則這批米內(nèi)夾谷約為().(結(jié)

果精確到整數(shù))

A.133石B.169石C.337石D.1364石

【答案】B

【分析】根據(jù)給定條件,利用樣本頻率去估計(jì)總體即可計(jì)算作答.

【詳解】依題意,抽取的樣本中,谷的頻率為三=上,由此估計(jì)1534石米內(nèi)有谷

254127

14

1534x而“169(石),

所以這批米內(nèi)夾谷約為169石.

【例3】中國(guó)農(nóng)歷的“二十四節(jié)氣”是凝結(jié)著中華民族的智慧與傳統(tǒng)文化的結(jié)晶,2022年2月

4日北京冬奧會(huì)開幕式,以二十四節(jié)氣的方式開始倒計(jì)時(shí),驚艷全球.某小學(xué)一年級(jí)隨機(jī)抽查

100名學(xué)生并提問“二十四節(jié)氣歌”,只能說出兩句的有32人,能說出三句或三句以上的有45

人,據(jù)此估計(jì)該校一年級(jí)的400名學(xué)生中對(duì)“二十四節(jié)氣歌”只能說出一句或一句也說不出的

人數(shù)約為()

A.23B.92C.128D.180

【答案】B

【分析】先計(jì)算100名學(xué)生中能說出一句或一句也說不出的人數(shù),根據(jù)抽樣比例計(jì)算即可

【詳解】由題意,100名學(xué)生中能說出一句或徇也說不出的人數(shù)為100—32—45=23人

故該校一年級(jí)的400名學(xué)生中對(duì)“二十四節(jié)氣歌”只能說出一句或一句也說不出的人數(shù)約為

翳…人

【例4】從一群游戲的小孩中隨機(jī)抽出女人,一人分一個(gè)蘋果,讓他們返回繼續(xù)游戲,過了

一會(huì)兒,再從中任取,〃人,發(fā)現(xiàn)其中有"個(gè)小孩曾分過蘋果,估計(jì)參加游戲的小孩的人數(shù)為

()

kn-,CktnC機(jī)

A.—B.k+tn—nC.—D.—

mnkn

【答案】C

【分析】用樣本估計(jì)總體,計(jì)算即可得.

【詳解】設(shè)總?cè)藬?shù)為“,則K=K,a=—

amn

[例5]某地區(qū)公共部門為了調(diào)查本地區(qū)中學(xué)生的吸煙情況,對(duì)隨機(jī)抽出的編號(hào)為1-1000的

IOOO名學(xué)生進(jìn)行了調(diào)查.調(diào)查中使用了兩個(gè)問題,問題1:你的編號(hào)是否為奇數(shù)?問題2:

你是否吸煙?被調(diào)查者從設(shè)計(jì)好的隨機(jī)裝置(內(nèi)有除顏色外完全相同的白球50個(gè),紅球50

個(gè))中摸出一個(gè)小球(摸完放回):摸到白球則如實(shí)回答問題1,摸到紅球則如實(shí)回答問題2,

回答“是”的人在一張白紙上畫一個(gè)‘7",回答"否”的人什么都不用做,由于問題的答案只有“是”

和“否”,而且回答的是哪個(gè)問題也是別人不知道的,因此被調(diào)查者可以毫無顧忌的給出真實(shí)

的答案.最后統(tǒng)計(jì)得出,這IoOO人中,共有265人回答“是”,則下列表述正確的是()

A.估計(jì)被調(diào)查者中約有15人吸煙B.估計(jì)約有15人對(duì)問題2的回答為“是”

C.估計(jì)該地區(qū)約有3%的中學(xué)生吸煙D.估計(jì)該地區(qū)約有1.5%的中學(xué)生吸煙

【答案】BC

【分析】先求出回答問題2且回答的“是”的人數(shù),從而估計(jì)出該地區(qū)中學(xué)生吸煙人數(shù)的百分

比,即得解.

【詳解】隨機(jī)抽出的IoOO名學(xué)生中,回答第一個(gè)問題的概率是其編號(hào)是奇數(shù)的概率也是

?,所以回答問題1且回答的“是”的學(xué)生人數(shù)為IOOoXTX∕=250,

回答問題2且回答的“是”的人數(shù)為265-250=15,

從而估計(jì)該地區(qū)中學(xué)生吸煙人數(shù)的百分比為焉=3%,

估計(jì)被調(diào)查者中吸煙的人數(shù)為IOoOX3%=30.

【題型專練】

1.我國(guó)古代數(shù)學(xué)名著《數(shù)書九章》是南宋數(shù)學(xué)家秦九韶所著數(shù)學(xué)著作,書中共列算題81問,

分為9類,全書采用問題集的形式,并不按數(shù)學(xué)方法來分類.題文也不只談數(shù)學(xué),還涉及自

然現(xiàn)象和社會(huì)生活,成為了解當(dāng)時(shí)社會(huì)政治和經(jīng)濟(jì)生活的重要參考文獻(xiàn).《數(shù)書九章》中有“米

谷粒分”一題,現(xiàn)有類似的題:糧倉開倉收糧,糧農(nóng)送來米1500石,驗(yàn)得米夾谷,抽樣取米

一把,數(shù)得304粒夾谷30粒,則這批米內(nèi)夾谷約為()

A.148石B.149石C.150石D.151石

【答案】A

【分析】抽樣調(diào)查中簡(jiǎn)單隨機(jī)抽樣,對(duì)象被抽到的概率是相同的,304粒夾谷30粒,1500

石米夾谷的比例是相同的,計(jì)算即可.

【詳解】由題意可知這批米內(nèi)夾谷約為1500XE3B148(石).

304

2.為了弘揚(yáng)文化自信,某中學(xué)隨機(jī)抽取了320個(gè)學(xué)生,調(diào)查其是否閱讀過四大名著《三國(guó)演

義》《西游記/水滸傳》及《紅樓夢(mèng)》經(jīng)統(tǒng)計(jì),其中閱讀過《三國(guó)演義》或《西游記》的有220

人,閱讀過《三國(guó)演義》的有180人,同時(shí)閱讀過《三國(guó)演義》和《西游記》兩本書的有120

人.用樣本估計(jì)總體,則該中學(xué)閱讀過《西游記》的學(xué)生人數(shù)與該中學(xué)學(xué)生總?cè)藬?shù)之比的估計(jì)

值為()

A.0.5B,0.6C.0.7D.0.8

【答案】A

【分析】求出閱讀過《西游記》的人數(shù)為160人,即得解.

【詳解】由題意知:該學(xué)校僅閱讀過《三國(guó)演義》的有180-120=60人,

所以閱讀過《西游記》的人數(shù)為220-60=160人,

則該學(xué)校閱讀過《西游記》的學(xué)生人數(shù)與該小區(qū)學(xué)生總?cè)藬?shù)之比的估計(jì)值為簽=0?5.

3.通過隨機(jī)抽樣用樣本頻率分布估計(jì)總體分布的過程中,下列說法正確的是().

A.總體容量越大,可能估計(jì)越精確B.樣本容量大小與估計(jì)結(jié)果無關(guān)

C.樣本容量越大,可能估計(jì)越精確D.樣本容量越小,可能估計(jì)越精確

【答案】C

【分析】用樣本頻率估計(jì)總體分布的過程中,對(duì)于同一個(gè)總體,樣本容量越大,則估計(jì)越準(zhǔn)

確,據(jù)此可以作出判斷.

【詳解】???用樣本頻率估計(jì)總體分布的過程中,

估計(jì)的是否準(zhǔn)確與總體的數(shù)量無關(guān),

只與樣本容量在總體中所占的比例有關(guān),

.?.樣本容量越大,估計(jì)的越準(zhǔn)確,

4.高考“3+3”模式指考生總成績(jī)由語文、數(shù)學(xué)、外語3個(gè)科目成績(jī)和高中學(xué)業(yè)水平考試3個(gè)

科目成績(jī)組成.計(jì)入總成績(jī)的高中學(xué)業(yè)水平考試科目,由考生根據(jù)報(bào)考高校要求和自身特長(zhǎng),

在思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中自主選擇.某中學(xué)為了解本校學(xué)生

的選擇情況,隨機(jī)調(diào)查了IOO位學(xué)生的選擇意向,其中選擇物理或化學(xué)的學(xué)生共有40位,選

擇化學(xué)的學(xué)生共有30位,選擇物理也選擇化學(xué)的學(xué)生共有10位,則該校選擇物理的學(xué)生人數(shù)

與該校學(xué)生總?cè)藬?shù)比值的估計(jì)值為()

A.0.1B.0.2C.0.3D.0.4

【答案】B

【解析】計(jì)算選擇物理的學(xué)生人數(shù)為20,再計(jì)算比值得到答案.

【詳解】選擇物理的學(xué)生人數(shù)為40-30+10=20,

即該校選擇物理的學(xué)生人數(shù)與該校學(xué)生總?cè)藬?shù)比值的估計(jì)值為急=0.2.

5.“二十四節(jié)氣歌”是以“春、夏、秋、冬”開始的四句詩.某小學(xué)三年級(jí)共有學(xué)生600名,隨機(jī)

抽查100名學(xué)生并提問二十四節(jié)氣歌,只能說出一句的有45人,能說出兩句及以上的有38

人,據(jù)此估計(jì)該校三年級(jí)的600名學(xué)生中,對(duì)二十四節(jié)氣歌一句也說不出的有人.

【答案】102

【分析】先求出隨機(jī)抽查的100名學(xué)生中,對(duì)二十四節(jié)氣歌一句也說不出的學(xué)生人數(shù),利用

樣本估計(jì)整體即可求解.

【詳解】解:根據(jù)題意,隨機(jī)抽查的100名學(xué)生中,對(duì)二十四節(jié)氣歌一句也說不出的學(xué)生有

100-45-38=17人,

故該校三年級(jí)的600名學(xué)生中,對(duì)二十四節(jié)氣歌一句也說不出的有600X1W7=I02人.

10()

題型五:分層隨機(jī)抽樣

【例1】某公司有160名員工,其中研發(fā)部120名,銷售部16名,客服部24名,為調(diào)查他

們的收入情況,從中抽取一個(gè)容量為20的樣本,較為合適的抽樣方法是()

A.簡(jiǎn)單隨機(jī)抽樣B.系統(tǒng)抽樣

C.分層抽樣D.其他抽樣

【答案】C

【分析】根據(jù)員工明顯來自三個(gè)不同的部門可以選擇適當(dāng)?shù)某闃臃椒?

【詳解】由題意員工來自三個(gè)不同的部門,因此采取分層抽樣方法較合適.

【例2】“太空教師”的神舟十三號(hào)航天員翟志剛、王亞平、葉光富出現(xiàn)在畫面中,“天宮課堂”

第一課在中國(guó)空間站正式開講.此次太空授課通過為同學(xué)們呈現(xiàn)多種精彩的實(shí)驗(yàn)和現(xiàn)象,激

發(fā)了同學(xué)們的好奇心,促使他們?nèi)ビ^察這些現(xiàn)象,進(jìn)而去思考、去探索,把科學(xué)思維的種子

種進(jìn)心里.某校為了解同學(xué)們對(duì)“天宮課堂''這種授課模式的興趣,決定利用分層抽樣的方法

從高二、高三學(xué)生中選取90人進(jìn)行調(diào)查,已知該校高二年級(jí)學(xué)生有1200人,高三年級(jí)學(xué)生

有1500人,則抽取的學(xué)生中,高三年級(jí)有()

A.20人B.30人C.40人D.50人

【答案】D

【分析】根據(jù)題意求得抽樣比,再結(jié)合高三年級(jí)的總?cè)藬?shù),即可求得結(jié)果.

【詳解】由題意可知該校高二年級(jí)學(xué)生有1200人,高三年級(jí)學(xué)生有1500人,

則高二年級(jí)與高三年級(jí)的學(xué)生人數(shù)比為4:5,

根據(jù)分層抽樣的特征可知,抽取的學(xué)生中,高三年級(jí)有90χ三=50人.

【例3】某校IOOO名學(xué)生中,。型血有400人,A型血有250人,B型血有250人,AB型

血有100人,為了研究血型與色弱的關(guān)系,要從中抽取一個(gè)容量為40的樣本,按照分層抽樣

的方法抽取樣本,則。型血、A型血、8型血、AB型血的人要分別抽的人數(shù)為()

A.16、10、10、4B.14、10、10、6

C.13、12、12、3D.15、8、8、9

【答案】A

【分析】根據(jù)分層抽樣中各層抽樣比與總體抽樣比相等可得出每種血型的人所抽的人數(shù).

【詳解】根據(jù)分層抽樣的特點(diǎn)可知,。型血的人要抽取的人數(shù)為40χ黑=16,

1000

A型血的人要抽取的人數(shù)為40x(2^50=10,

B型血的人要抽取的人數(shù)為40x急250=10,

1000

AB型血的人要抽取的人數(shù)為40x凝=4,

【例4】某中學(xué)高一年級(jí)有女生380人,男生420人,學(xué)校想通過抽樣的方法估計(jì)高一年級(jí)

全體學(xué)生的平均體重.學(xué)校從女生和男生中抽取的樣本分別為40和80,經(jīng)計(jì)算這40個(gè)女生

的平均體重為49kg,80個(gè)男生的平均體重為57kg,依據(jù)以上條件,估計(jì)高一年級(jí)全體學(xué)生

的平均體重最合理的計(jì)算方法為()

49+5740C805

A.B.-----×49+×57

2800--------800

40C80c380c4205

C.——X49+—×57D.-----×494------X57

120120800800

【答案】D

【分析】利用比例分配的分層隨機(jī)抽樣計(jì)算可得答案.

【詳解】用女生樣本的平均體重49kg估計(jì)女生總體的平均體重,用男生樣本的平均體重57kg

估計(jì)男生總體的平均體重,按女生和男生在總?cè)藬?shù)中的比例計(jì)算總體的平均體重,所以D選

項(xiàng)最合理.

【例5】某公司生產(chǎn)三種型號(hào)的轎車,年產(chǎn)量分別為1500輛、6000輛和2000輛.為檢驗(yàn)產(chǎn)

品質(zhì)量,公司質(zhì)檢部門要抽取57輛進(jìn)行檢驗(yàn),則下列說法正確的是()

A.應(yīng)采用分層隨機(jī)抽樣抽取B.應(yīng)采用抽簽法抽取

C.三種型號(hào)的轎車依次應(yīng)抽取9輛、36輛、12輛D.這三種型號(hào)的轎車,每一輛被抽

到的可能性相同

【答案】ACD

【分析】根據(jù)分層抽樣的概念及計(jì)算方法,逐項(xiàng)判定,即可求解.

【詳解】因?yàn)槭侨N型號(hào)的轎車,個(gè)體差異明顯,所以選擇分層隨機(jī)抽樣,所以A正確;

個(gè)體數(shù)目多,用抽簽法制簽難,攪拌不均勻,抽出的樣本不具有代表性,所以B錯(cuò)誤;

573333

因?yàn)?—,所以1500x-=9(輛),6000×——=36(輛),2000×-=12

1500+6000+2000500500500500

(輛),所以三種型號(hào)的轎車依次應(yīng)抽取9輛、36輛、12輛,所以C正確;

分層隨機(jī)抽樣中,每一個(gè)個(gè)體被抽到的可能性相同,故選項(xiàng)。正確.

【題型專練】

1.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》有一抽樣問題:“今有北鄉(xiāng)若干人,西鄉(xiāng)四百人,南鄉(xiāng)兩

百人,凡三鄉(xiāng),發(fā)役六十人,而北鄉(xiāng)需遺十,問北鄉(xiāng)人數(shù)幾何?“其意思為:“今有某地北面

若干人,西面有400人,南面有200人,這三面要征調(diào)60人,而北面共征調(diào)10人(用分層

抽樣的方法),則北面共有()人.”

A.200B.100C.120D.140

【答案】C

【分析】根據(jù)分層抽樣的定義結(jié)合題意列方程求解即可

【詳解】設(shè)北面共有X人,則由題意可得

r10

-k才解得…

所以北面共有120人,

2.現(xiàn)要完成下列2項(xiàng)抽樣調(diào)查:

①從10盒酸奶中抽取3盒進(jìn)行食品衛(wèi)生檢查;

②東方中學(xué)共有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了

解教職工對(duì)學(xué)校在校務(wù)公開方面的意見,擬抽取一個(gè)容量為20的樣本.

較為合理的抽樣方法是()

A.①抽簽法,②分層隨機(jī)抽樣B.①隨機(jī)數(shù)法,②分層隨機(jī)抽樣

C.①隨機(jī)數(shù)法,②抽簽法D.①抽簽法,②隨機(jī)數(shù)法

【答案】A

【分析】根據(jù)已知條件,結(jié)合抽簽法和分層隨機(jī)抽樣的定義,即可求解

【詳解】①總體較少,宜用抽簽法;②各層間差異明顯,宜用分層隨機(jī)抽樣.

3.某大學(xué)為了了解在校本科生對(duì)參加某項(xiàng)社會(huì)實(shí)踐活動(dòng)的意向,擬采用分層抽樣的方法,從

該校四個(gè)年級(jí)的本科生中抽取一個(gè)容量為300的樣本進(jìn)行調(diào)查.己知該校一年級(jí)、二年級(jí)、

三年級(jí)、四年級(jí)的本科生人數(shù)之比為4:5:5:6,則應(yīng)從一年級(jí)本科生中抽取學(xué)生的人數(shù)是()

A.40

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論