版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省蘇州市振華中學2023年數(shù)學九年級第一學期期末考試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.在平面直角坐標系中,拋物線與軸交于點,與軸交于點,則的面積是()A.6 B.10 C.12 D.152.如圖,在中,.將繞點按順時針方向旋轉度后得到,此時點在邊上,斜邊交邊于點,則的大小和圖中陰影部分的面積分別為()A. B.C. D.3.已知:拋物線y1=x2+2x-3與x軸交于A、B兩點(點A在點B的左側),拋物線y2=x2-2ax-1(a>0)與x軸交于C、D兩點(點C在點D的左側),在使y1>0且y2≤0的x的取值范圍內恰好只有一個整數(shù)時,a的取值范圍是()A.0<a≤ B.a≥ C.≤a< D.<a≤4.如圖,已知點A(m,m+3),點B(n,n﹣3)是反比例函數(shù)y=(k>0)在第一象限的圖象上的兩點,連接AB.將直線AB向下平移3個單位得到直線l,在直線l上任取一點C,則△ABC的面積為()A. B.6 C. D.95.某射擊運動員在訓練中射擊了10次,成績如圖所示:下列結論不正確的是()A.眾數(shù)是8 B.中位數(shù)是8 C.平均數(shù)是8.2 D.方差是1.26.一元二次方程2x2+3x+5=0的根的情況為()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根7.如圖是成都市某周內日最高氣溫的折線統(tǒng)計圖,關于這7天的日最高氣溫的說法正確的是()A.極差是8℃ B.眾數(shù)是28℃ C.中位數(shù)是24℃ D.平均數(shù)是26℃8.將拋物線y=ax2+bx+c向左平移2個單位,再向下平移3個單位得拋物線y=﹣(x+2)2+3,則()A.a=﹣1,b=﹣8,c=﹣10 B.a=﹣1,b=﹣8,c=﹣16C.a=﹣1,b=0,c=0 D.a=﹣1,b=0,c=69.四邊形內接于⊙,點是的內心,,點在的延長線上,則的度數(shù)為()A.56° B.62° C.68° D.48°10.已知線段CD是由線段AB平移得到的,點A(–1,4)的對應點為C(4,7),則點B(–4,–1)的對應點D的坐標為()A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)11.下列交通標志中,是中心對稱圖形的是()A. B. C. D.12.下列實數(shù)中,有理數(shù)是()A.﹣2 B. C.﹣1 D.π二、填空題(每題4分,共24分)13.如圖,將矩形ABCD繞點A旋轉至矩形AB′C′D′位置,此時AC′的中點恰好與D點重合,AB′交CD于點E.若AB=6,則△AEC的面積為_____.14.過⊙O內一點M的最長弦為10cm,最短弦為8cm,則OM=cm.15.如圖,菱形的頂點C的坐標為,頂點A在x軸的正半軸上.反比例函數(shù)的圖象經(jīng)過頂點B,則k的值為__.16.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現(xiàn)將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.17.如圖,RtΔABC繞直角頂點C順時針旋轉90°,得到ΔDEC,連接AD,若∠BAC=25°,則∠ADE=_________18.已知,是方程的兩個實根,則______.三、解答題(共78分)19.(8分)如圖,將△ABC繞點B旋轉得到△DBE,且A,D,C三點在同一條直線上。求證:DB平分∠ADE.20.(8分)為了維護國家主權,海軍艦隊對我國領海例行巡邏.如圖,正在執(zhí)行巡航任務的艦隊以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔在北偏東30°方向上.(1)求∠APB的度數(shù).(2)已知在燈塔P的周圍40海里范圍內有暗礁,問艦隊繼續(xù)向正東方向航行是否安全?21.(8分)如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.(1)求拋物線的解析式.(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標.(3)在平面直角坐標系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標.22.(10分)“垃圾分類”越來越受到人們的關注,我市某中學對部分學生就“垃圾分類”知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:(1)接受問卷調查的學生共有人,條形統(tǒng)計圖中的值為;(2)扇形統(tǒng)計圖中“了解很少”部分所對應扇形的圓心角的度數(shù)為;(3)若從對垃圾分類知識達到“非常了解”程度的2名男生和2名女生中隨機抽取2人參加垃圾分類知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.23.(10分)四張質地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.(1)求隨機抽取一張卡片,恰好得到數(shù)字2的概率;(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認為這個游戲公平嗎?請用列表法或畫樹形圖法說明理由.24.(10分)如圖,等邊△ABC內接于⊙O,P是上任一點(點P不與點A、B重合),連AP、BP,過點C作CM∥BP交PA的延長線于點M.(1)填空:∠APC=度,∠BPC=度;(2)求證:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面積.25.(12分)如圖,在矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取一點O,以點O為圓心,OF為半徑作⊙O與AD相切于點P.AB=6,BC=(1)求證:F是DC的中點.(2)求證:AE=4CE.(3)求圖中陰影部分的面積.26.(1)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE,求證:CE=CF;(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD;(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)題意,先求出點A、B、C的坐標,然后根據(jù)三角形的面積公式,即可求出答案.【詳解】解:∵拋物線與軸交于點,∴令,則,解得:,,∴點A為(1,0),點B為(,0),令,則,∴點C的坐標為:(0,);∴AB=4,OC=3,∴的面積是:=;故選:A.【點睛】本題考查了二次函數(shù)與坐標軸的交點,解題的關鍵是熟練掌握二次函數(shù)的性質,求出拋物線與坐標軸的交點.2、C【解析】試題分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋轉而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等邊三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位線,∴DF=BC=×2=1,CF=AC=×2=,∴S陰影=DF×CF=×=.故選C.考點:1.旋轉的性質2.含30度角的直角三角形.3、C【分析】根據(jù)題意可知的對稱軸為可知使y1>0且y2≤0的x的取值范圍內恰好只有一個整數(shù)時,只要符合將代入中,使得,且將代入中使得即可求出a的取值范圍.【詳解】由題意可知的對稱軸為可知對稱軸再y軸的右側,由與x軸交于A、B兩點(點A在點B的左側)可知當時可求得使的x的取值范圍內恰好只有一個整數(shù)時只要符合將代入中,使得,且將代入中使得即求得解集為:故選C【點睛】本題主要考查了二次函數(shù)圖像的性質,利用數(shù)形結合思想解決二次函數(shù)與不等式問題是解題關鍵.4、A【分析】由點A(m,m+3),點B(n,n﹣3)在反比例函數(shù)y=(k>0)第一象限的圖象上,可得到m、n之間的關系,過點A、B分別作x軸、y軸的平行線,構造直角三角形,可求出直角三角形的直角邊的長,由平移可得直角三角形的直角頂點在直線l上,進而將問題轉化為求△ADB的面積.【詳解】解:∵點A(m,m+3),點B(n,n﹣3)在反比例函數(shù)y=(k>0)第一象限的圖象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,過點A、B分別作x軸、y軸的平行線相交于點D,∴BD=xB﹣xA=n﹣m=3,AD=y(tǒng)A﹣yB=m+3﹣(n﹣3)=m﹣n+6=3,又∵直線l是由直線AB向下平移3個單位得到的,∴平移后點A與點D重合,因此,點D在直線l上,∴S△ACB=S△ADB=AD?BD=,故選:A.【點睛】本題主要考察反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵是熟練掌握計算法則.5、D【分析】首先根據(jù)圖形數(shù)出各環(huán)數(shù)出現(xiàn)的次數(shù),在進行計算眾數(shù)、中位數(shù)、平均數(shù)、方差.【詳解】根據(jù)圖表可得10環(huán)的2次,9環(huán)的2次,8環(huán)的3次,7環(huán)的2次,6環(huán)的1次.所以可得眾數(shù)是8,中位數(shù)是8,平均數(shù)是方差是故選D【點睛】本題主要考查統(tǒng)計的基本知識,關鍵在于眾數(shù)、中位數(shù)、平均數(shù)和方差的概念.特別是方差的公式.6、D【分析】根據(jù)根的判別式即可求出答案.【詳解】由題意可知:△=9﹣4×2×5=﹣31<0,故選:D.【點睛】本題考查的是一元二次方程系數(shù)與根的關系,當時,有兩個不相等的實數(shù)根;當時,有兩個相等的實數(shù)根;當時,沒有實數(shù)根.7、B【解析】分析:根據(jù)折線統(tǒng)計圖中的數(shù)據(jù)可以判斷各個選項中的數(shù)據(jù)是否正確,從而可以解答本題.詳解:由圖可得,極差是:30-20=10℃,故選項A錯誤,眾數(shù)是28℃,故選項B正確,這組數(shù)按照從小到大排列是:20、22、24、26、28、28、30,故中位數(shù)是26℃,故選項C錯誤,平均數(shù)是:℃,故選項D錯誤,故選B.點睛:本題考查折線統(tǒng)計圖、極差、眾數(shù)、中位數(shù)、平均數(shù),解答本題的關鍵是明確題意,能夠判斷各個選項中結論是否正確.8、D【分析】將所得拋物線解析式整理成頂點式形式,然后寫出頂點坐標,再根據(jù)向右平移橫坐標加,向下平移減逆向求出原拋物線的頂點坐標,從而求出原拋物線解析式,再展開整理成一般形式,最后確定出a、b、c的值.【詳解】解:∵y=-(x+2)2+3,∴拋物線的頂點坐標為(-2,3),∵拋物線y=ax2+bx+c向左平移2個單位,再向下平移3個單位長度得拋物線y=-(x+2)2+3,-2+2=0,3+3=1,∴平移前拋物線頂點坐標為(0,1),∴平移前拋物線為y=-x2+1,∴a=-1,b=0,c=1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減;本題難點在于逆運用規(guī)律求出平移前拋物線頂點坐標.9、C【分析】由點I是的內心知,,從而求得,再利用圓內接四邊形的外角等于內對角可得答案.【詳解】∵點I是的內心∴,∵∴∵四邊形內接于⊙∴故答案為:C.【點睛】本題考查了三角形的內心,圓內接四邊形的性質,掌握三角形內心的性質和圓內接四邊形的外角等于內對角是解題的關鍵.10、A【解析】∵線段CD是由線段AB平移得到的,而點A(?1,4)的對應點為C(4,7),∴由A平移到C點的橫坐標增加5,縱坐標增加3,則點B(?4,?1)的對應點D的坐標為(1,2).故選A11、D【解析】根據(jù)中心對稱圖形的概念判斷即可.【詳解】A、不是中心對稱圖形;B、不是中心對稱圖形;C、不是中心對稱圖形;D、是中心對稱圖形.故選D.【點睛】本題考查的是中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.12、A【分析】根據(jù)有理數(shù)的定義判斷即可.【詳解】A、﹣2是有理數(shù),故本選項正確;B、是無理數(shù),故本選項錯誤;C、﹣1是無理數(shù),故本選項錯誤;D、π是無理數(shù),故本選項錯誤;故選:A.【點睛】本題考查有理數(shù)和無理數(shù)的定義,關鍵在于牢記定義.二、填空題(每題4分,共24分)13、4【分析】根據(jù)旋轉后AC的中點恰好與D點重合,利用旋轉的性質得到直角三角形ACD中,∠ACD=30°,再由旋轉后矩形與已知矩形全等及矩形的性質得到∠DAE為30°,進而得到∠EAC=∠ECA,利用等角對等邊得到AE=CE,設AE=CE=x,表示出AD與DE,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出EC的長,即可求出三角形AEC面積.【詳解】解:∵旋轉后AC的中點恰好與D點重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,設AE=EC=x,則有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根據(jù)勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,則S△AEC=EC?AD=4.故答案為4.【點睛】本題考查了旋轉的性質,含30度直角三角形的性質,勾股定理以及等腰三角形的性質的運用,熟練掌握性質及定理是解答本題的關鍵.14、3【解析】試題分析:最長弦即為直徑,最短弦即為以M為中點的弦,所以此時考點:弦心距與弦、半徑的關系點評:15、1【分析】根據(jù)點C的坐標以及菱形的性質求出點B的坐標,然后利用待定系數(shù)法求出k的值.【詳解】∵C(3,4),∴OC==5,∴CB=OC=5,則點B的橫坐標為3+5=8,故B的坐標為:(8,4),將點B的坐標代入y=得,
4=,解得:k=1.故答案為1.【點睛】本題考查了菱形的性質以及利用待定系數(shù)法求反比例函數(shù)解析式,解答本題的關鍵是根據(jù)菱形的性質求出點B的坐標.16、【解析】判斷出即是中心對稱,又是軸對稱圖形的個數(shù),然后結合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.17、20°【分析】由題意根據(jù)旋轉的性質可得AC=CD,∠CDE=∠BAC,再判斷出△ACD是等腰直角三角形,然后根據(jù)等腰直角三角形的性質求出∠CAD=45°,根據(jù)∠ADE=∠CED-∠CAD.【詳解】解:∵Rt△ABC繞其直角頂點C按順時針方向旋轉90°后得到△DEC,∴AC=CD,∠CDE=∠BAC=25°,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠ADE=∠CED-∠CAD=45°-25°=20°.故答案為:20°.【點睛】本題考查旋轉的性質,等腰直角三角形的判定與性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記各性質并準確掌握理解圖示是解題的關鍵.18、27【分析】根據(jù)根與系數(shù)的關系,由x12+x22=(x1+x2)2?2x1x2,即可得到答案.【詳解】∵x1,x2是方程
x2?5x?1=0
的兩根,∴x1+x2=5,x1?x2=?1,∴x12+x22=(x1+x2)2?2x1x2=52-2×(-1)=27;故答案為27.【點睛】本題考查了一元二次方程的根與系數(shù)的關系,解題的關鍵是熟練掌握根與系數(shù)的關系,并正確進行化簡計算.三、解答題(共78分)19、證明見解析.【分析】根據(jù)旋轉的性質得到△ABC≌△DBE,進一步得到BA=BD,從而得到∠A=∠ADB,根據(jù)∠A=∠BDE得到∠ADB=∠BDE,從而證得結論.【詳解】證明:∵將△ABC繞點B旋轉得到△DBE,∴△ABC≌△DBE∴BA=BD.∴∠A=∠ADB.∵∠A=∠BDE,∴∠ADB=∠BDE.∴DB平分∠ADE.【點睛】本題考查了旋轉的性質:①對應點到旋轉中心的距離相等;②對應點與旋轉中心所連線段的夾角等于旋轉角;③旋轉前、后的圖形全等.也考查了鄰補角定義.20、(1);(2)安全.【分析】(1)如圖(見解析),先根據(jù)方位角的定義可得,再根據(jù)平行線的判定與性質可得,然后根據(jù)角的和差即可得;(2)設海里,分別在和中,解直角三角形建立等式,求出x的值,由此即可得出答案.【詳解】(1)如圖,過點P作于點C,由題意得:海里,,,;(2)由垂線段最短可知,若海里,則艦隊繼續(xù)向正東方向航行是安全的,設海里,在中,,即,解得,在中,,即,解得,,,解得,即海里,,艦隊繼續(xù)向正東方向航行是安全的.【點睛】本題考查了方位角、平行線的判定與性質、解直角三角形等知識點,較難的是題(2),將問題正確轉化為求PC的長是解題關鍵.21、(1)y=﹣x2﹣2x+3;(2)點P(,);(3)符合條件的點D的坐標為D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【分析】(1)令y=0,求出點A的坐標,根據(jù)拋物線的對稱軸是x=﹣1,求出點C的坐標,再根據(jù)待定系數(shù)法求出拋物線的解析式即可;(2)設點P(m,﹣m2﹣2m+3),利用拋物線與直線相交,求出點B的坐標,過點P作PF∥y軸交直線AB于點F,利用S△ABP=S△PBF+S△PFA,用含m的式子表示出△ABP的面積,利用二次函數(shù)的最大值,即可求得點P的坐標;(3)求出點E的坐標,然后求出直線BC、直線BE、直線CE的解析式,再根據(jù)以點B、E、C、D為頂點的四邊形是平行四邊形,得到直線D1D2、直線D1D3、直線D2D3的解析式,即可求出交點坐標.【詳解】解:(1)令y=0,可得:x﹣1=0,解得:x=1,∴點A(1,0),∵拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,∴﹣1×2﹣1=﹣3,即點C(﹣3,0),∴,解得:∴拋物線的解析式為:y=﹣x2﹣2x+3;(2)∵點P在直線AB上方的拋物線上運動,∴設點P(m,﹣m2﹣2m+3),∵拋物線與直線y=x﹣1交于A、B兩點,∴,解得:,∴點B(﹣4,﹣5),如圖,過點P作PF∥y軸交直線AB于點F,則點F(m,m﹣1),∴PF=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,∴S△ABP=S△PBF+S△PFA=(﹣m2﹣3m+4)(m+4)+(﹣m2﹣3m+4)(1﹣m)=-(m+)2+,∴當m=時,P最大,∴點P(,).(3)當x=﹣1時,y=﹣1﹣1=﹣2,∴點E(﹣1,﹣2),如圖,直線BC的解析式為y=5x+15,直線BE的解析式為y=x﹣1,直線CE的解析式為y=﹣x﹣3,∵以點B、C、E、D為頂點的四邊形是平行四邊形,∴直線D1D3的解析式為y=5x+3,直線D1D2的解析式為y=x+3,直線D2D3的解析式為y=﹣x﹣9,聯(lián)立得D1(0,3),同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),綜上所述,符合條件的點D的坐標為D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【點睛】本題考查二次函數(shù)的綜合應用,解決第(2)小題中三角形面積的問題時,找到一條平行或垂直于坐標軸的邊是關鍵;對于第(3)小題,要注意分類討論、數(shù)形結合的運用,不要漏解.22、(1)60,10;(2)96°;(3)【分析】(1)根據(jù)基本了解的人數(shù)和所占的百分比可求出總人數(shù),m=總人數(shù)-非常了解的人數(shù)-基本了解的人數(shù)-了解很少的人數(shù);(2)先求出“了解很少”所占總人數(shù)的百分比,再乘以360°即可;(3)采用列表法或樹狀圖找到所有的情況,再從中找出所求的1名男生和1名女生的情況,再由概率等于所求情況數(shù)與總情況數(shù)之比來求解.【詳解】(1)(2)“了解很少”所占總人數(shù)的百分比為所以所對的圓心角的度數(shù)為(3)由表格可知,共有12種結果,其中1名男生和1名女生的有8種可能,所以恰好抽到1名男生1名女生的概率為【點睛】本題主要考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,根據(jù)圖中信息解題,以及用列表法或樹狀圖求概率,解題的關鍵是根據(jù)題意畫出樹狀圖或表格,再由概率等于所求情況與總情況之比求解,注意列表時要做到不重不漏.23、(1)P(抽到數(shù)字2)=;(2)游戲不公平,圖表見解析.【詳解】試題分析:(1)根據(jù)概率公式即可求解;(2)利用列表法,求得小貝勝與小晶勝的概率,比較即可游戲是否公平.試題解析:(1)P(抽到數(shù)字2)=;(2)公平.列表:
2
2
3
6
2
(2,2)
(2,2)
(2,3)
(2,6)
2
(2,2)
(2,2)
(2,3)
(2,6)
3
(3,2)
(3,2)
(3,3)
(3,6)
6
(6,2)
(6,2)
(6,3)
(6,6)
由上表可以看出,可能出現(xiàn)的結果共有16種,它們出現(xiàn)的可能性相同,所有的結果中,滿足兩位數(shù)不超過32的結果有10種.所以P(小貝勝)=,P(小晶勝)=.所以游戲不公平.考點:游戲公平性.24、(1)60;60;(2)證明見解析;(3).【分析】(1)利用同弧所對的圓周角相等即可求得題目中的未知角;(2)利用(1)中得到的相等的角和等邊三角形中相等的線段證得兩三角形全等即可;(3)利用(2)證得的兩三角形全等判定△PCM為等邊三角形,進而求得PH的長,利用梯形的面積公式計算梯形的面積即可.【詳解】(1)∵△ABC是等邊三角形,∴∠ABC=∠BAC=60°,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°,故答案為60,60;(2)∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四點共圓,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC,∵AC=BC,∴△ACM≌△BCP;(3)作PH⊥CM于H,∵△ACM≌△BCP,∴CM=CPAM=BP,又∠M=60°,∴△PCM為等邊三角形,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,∴PH=,∴S梯形PBCM=(PB+CM)×PH=×(2+3)×=.【點睛】本題考查了圓周角定理、等邊三角形的判定、全等三角形的性質及梯形的面積計算方法,是一道比較復雜的幾何綜合題,解題的關鍵是熟練掌握和靈活運用相關的性質與判定定理.25、(1)見解析;(2)見解析;(3)【分析】(1)易求DF長度即可判斷;(2)通過30°角所對的直角邊等于斜邊一半證得AE=2EF,EF=2CE即可得;(3)先證明△OFG為等邊三角形,△OPG為等邊三角形,即可確定扇形圓心角∠POG和∠GOF的大小均為60°,所以兩扇形面積相等,通過割補法得出最后陰影面積只與矩形OPDH和△OGF有關,根據(jù)面積公式求出兩圖形面積即可.【詳解】(1)∵AF=AB=6,AD=BC=,∴DF=3,∴CF=DF=3,∴F是CD的中點(2)∵AF=6,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寒假安全教育主題班會方案8篇
- 形勢任務教育心得體會
- 開學典禮副校長講話稿15篇
- 招商引資差旅費管理辦法
- 中國分布式光纖傳感器行業(yè)發(fā)展現(xiàn)狀及市場前景分析預測報告
- 湖南省溆浦一中普通高中學業(yè)水平考試模擬試卷語文試題(含答案)
- Massive MIMO系統(tǒng)低復雜度混合預編碼方法研究
- 2025版銷售經(jīng)理多元化市場拓展聘用合同模板3篇
- 志愿培訓教材
- 應急管理法規(guī)與政策解讀
- 《openEuler操作系統(tǒng)》考試復習題庫(含答案)
- 《天潤乳業(yè)營運能力及風險管理問題及完善對策(7900字論文)》
- 醫(yī)院醫(yī)學倫理委員會章程
- xx單位政務云商用密碼應用方案V2.0
- 北師大版五年級上冊數(shù)學期末測試卷及答案共5套
- 2024-2025學年人教版生物八年級上冊期末綜合測試卷
- 2025年九省聯(lián)考新高考 語文試卷(含答案解析)
- 全過程工程咨詢投標方案(技術方案)
- 心理健康教育學情分析報告
- 農民專業(yè)合作社財務報表(三張報表)
- 安宮牛黃丸的培訓
評論
0/150
提交評論