版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
地?zé)崮馨l(fā)電與地源熱泵技術(shù)1BackgroundIntroductionPowerGenerationDirectUtilizationCatalogue2BackgroundIntroduction
J.Zhuetal./Energy
93(2015)466e483
3BackgroundIntroduction
ItiscriticalforChinatoutilizegeothermalenergyforsustainabledevelopment,asChinaisthelargestcountryinenergyconsumptionandthesecondlargesteconomyintheworld!
J.Zhuetal./Energy93(2015)466e483
4GeothermalResourcesInChina
ThedistributionmapofgeothermalresourcesinChina
J.Zhuetal./Energy93(2015)466e483
5GeothermalResourcesInChinaAssessmentofgeothermalresourcesShallowgeothermalresourcesTotal:?milliontonsofstandardcoalRecovery:?milliontonsofstandardcoal
Sedimentarybasinsresources
Total:?milliontonsofstandardcoalSichuanBasin:31.2%NorthChinaPlain:21.7%
WeiheRiver-YunchengBasin:14.6%
HotdryrockresourcesTotal:?milliontonsofstandardcoal
J.Zhuetal./Energy93(2015)466e4836GeothermalUtilizationInChinaGeothermalpowergeneration1970:Thefirstgeothermalpowergenerationstationwasestablished.1971:Thefirstgeothermalbinarypowerstationwasconstructed.Thelate1970s:SeveralindustrialgeothermalpowerplantsusinghightemperatureresourceswerebuiltinTibet.1977-1991:9testunitsstationwithcapacityofMWewasinstalled.2014:thetotalinstalledcapacityofgeothermalpowerstationsis35.38MWeincludingstationsinTaiwan.
Alltheworkdonebefore,especiallyonmedium-lowtemperaturegeothermalpowertechnologywillcertainlyprovidetechnicalsupportforChina'sgeothermalpowergenerationinthefuture!
J.Zhuetal./Energy93(2015)466e483
7GeothermalUtilizationInChina
Directutilization?GeothermalsourceheatpumpThefirstGSHPprojectwastheapplicationforNewHendersonBuildinginBeijingin1995,ThereisarapiddevelopmentofGSHPapplicationinthe21stcentury.
GSHPapplicationareainChina,2006-2014
J.Zhuetal./Energy93(2015)466e4838GeothermalUtilizationInChina
DirectutilizationGeothermaldistrictheatingHotspringbathandmedicalcareGreenhouseandaquacultureIndustrialutilizationandcropdryingAtpresent,moreandmorestudiesfocusonseasonalenergystorage,integrationofusinghybridsystemsandsavingenergyinbuildings,systemcontrolstrategy,andheatpumpsusingCO?asaworkingfluid!
9GeothermalUtilizationInChinaHotdryrockresourcesAtpresent,theexploitationofHDRresourcesinChinaisinitsinfancy
GeothermalgradientinChina(°C/km).
J.Zhuetal./Energy93(2015)466e48310GovernmentSupportFinancialsupportfromtheChinesegovernmentsince2006.NEAandMOLR:Shallowdepthgeothermalenergy→heatingandcoolingDeepgeothermalenergy→geothermalpowergenerationmediumtemperaturegeothermalpowergenerationandHDRpowergeneration
J.Zhuetal./Energy93(2015)466e483
11
地?zé)岚l(fā)電技術(shù)12地?zé)岚l(fā)電的分類及發(fā)展過程
TheClassificationandEvolutionofGeothermalPowerPlant13TheClassificationofGeothermalPowerPlantDrysteamplantsFlash-steamplantsBinary-cycleplantsYariM.Exergeticanalysisofvarioustypesofgeothermalpowerplants[J].RenewableEnergy,2010,35(1):112-121.14TheClassificationofGeothermalPowerPlantDrysteamplantsDrysteam,cleaningsteam(Acidicgases,Dissolvedsolids)MaintypeBackpressureturbinepowergeneration(背壓式)Condensingsteamturbinepowergeneration(凝汽式)LuT,GaoXW,WangXD,etal.Thegeothermalpowerandmaintechnicalproblems[C]//InternationalConferenceonSustainablePowerGenerationandSupply,2009.Supergen.IEEE,2009:1-4.15TheClassificationofGeothermalPowerPlantFlash-steamplantsGeothermalfluid,flashvaporizerMaintypeSingle-flashplantsDouble-flashplantsFull-flowmethodLuT,GaoXW,WangXD,etal.Thegeothermalpowerandmaintechnicalproblems[C]//InternationalConferenceonSustainablePowerGenerationandSupply,2009.Supergen.IEEE,2009:1-4.16TheClassificationofGeothermalPowerPlantBinary-cycleplantsLowboilingpointsubstance,Chloroethane(氯乙烷)n-Butane(正丁烷)SteamofworkingmediumMaintypeSingle-binary-cycleplantsDouble-binary-cycleplantsLuT,GaoXW,WangXD,etal.Thegeothermalpowerandmaintechnicalproblems[C]//InternationalConferenceonSustainablePowerGenerationandSupply,2009.Supergen.IEEE,2009:1-4.17DipippoR.Geothermalpowerplants:Evolutionandperformanceassessments[J].Geothermics,2015,53:291-307.ConcernaboutthegeosteamAcidicgasesDissolvedsolids→CannotusedirectlyFerdinandoRaynautGeosteamflowthroughthetubesinsidetheboilerAttacktheboilertubesGeosteammixwithcleansteam→ProblemsintheengineTheEvolutionofGeothermalPowerPlantTheoriginofgeothermalpowergenerationNotsuccessful18DipippoR.Geothermalpowerplants:Evolutionandperformanceassessments[J].Geothermics,2015,53:291-307.TheEvolutionofGeothermalPowerPlantTheoriginofgeothermalpowergenerationAwareofthepotentialcorrosionproblemsSendthesteamthroughatankMarkedthebeginningoftheera(紀(jì)元)ofgeothermalelectricity(July,1904)SurprisinglySuccessfulGinoriContiBoricacidbusinessatLarderelloGenerateelectricityandsavethecost19DipippoR.Geothermalpowerplants:Evolutionandperformanceassessments[J].Geothermics,2015,53:291-307.TheEvolutionofGeothermalPowerPlantTheoriginofgeothermalpowergenerationFirstattempttomakeaproto-type(雛形)commercialelect-ricalpowerplantshellsfilledwithdown-flowingnaturalsteamtubeswithup-flowingliquidwaterpuresteamthatwascollectedinasteamdrumEmployedasurfacecondenser
withcoolingwater20TheEvolutionofGeothermalPowerPlantThegrowthofgeothermalpowergenerationDipippoR.Geothermalpowerplants:Evolutionandperformanceassessments[J].Geothermics,2015,53:291-307.1925BeppuinJapanFirstunittousewetsteam21TheEvolutionofGeothermalPowerPlantThegrowthofgeothermalpowergenerationDipippoR.Geothermalpowerplants:Evolutionandperformanceassessments[J].Geothermics,2015,53:291-307.1942IschiainItalyFirstbinaryplant22TheEvolutionofGeothermalPowerPlantThegrowthofgeothermalpowergenerationDipippoR.Geothermalpowerplants:Evolutionandperformanceassessments[J].Geothermics,2015,53:291-307.1951HakuryuinJapanFirstflashunittooperateonaliquid-dominatedreservoir23TheEvolutionofGeothermalPowerPlantThegrowthofgeothermalpowergenerationDipippoR.Geothermalpowerplants:Evolutionandperformanceassessments[J].Geothermics,2015,53:291-307.1970—1977ChinaFlashunitandBinaryplantappeared24
TheEvolutionofGeothermalPowerPlantThegeothermalpowergenerationtodayMostCapacity→SingleFlashinoperationMostwideuse
→BinaryinoperationBertaniR.GeothermalpowergenerationintheWorld2010-2014updatereport[J].Geothermics,2011,41:1-29.25OrganicRankineCycle(ORC)(朗肯有機(jī)循環(huán))26Construction
HEGeothermalreservoirTBCOPPOrganicRankineCycle(ORC)(朗肯有機(jī)循環(huán))Noémie,Chagnon-Lessardetal./Geothermics,2016,(64):111-12427OrganicRankineCycle(ORC)(朗肯有機(jī)循環(huán))ORCSubcriticalcycleTranscriticalcycleturbineinletpressuresmallerthantheworkingfluidcritical(臨界)
pressureturbineinletpressurelargerthantheworkingfluidcriticalpressure次臨界超臨界Noémie,Chagnon-Lessard.Geothermalpowerplantswithmaximizedspecificpoweroutput:OptimalworkingfluidandoperatingconditionsofsubcriticalandtranscriticalOrganicRankineCycles[J].Geothermics,2016,(64):111-12428SecondarycircuitsSubcriticalcycleORCGeofluidfromthereservoirThreeheatexchangersReinjectedinthegroundGeofluidcompressedliquidstatePrimarycircuitsEquipmentarchitectureJalilinasrabadyetal.,2012;Pambudietal.,2014Primarycircuits29SubcriticalcycleORCPrimarycircuitsSecondarycircuitsEquipmentarchitectureThermodynamicdiagramSecondarycircuitsState1:saturatedliquidState2:desiredpressureState3:saturatedliquidState4:saturatedvaporNoémie,Chagnon-Lessard.Geothermalpowerplantswithmaximizedspecificpoweroutput:OptimalworkingfluidandoperatingconditionsofsubcriticalandtranscriticalOrganicRankineCycles[J].Geothermics,2016,(64):111-12430PrimarycircuitsSecondarycircuitsTranscriticalcycleORCGeofluidfromthereservoirOneheatexchangersReinjectedinthegroundPrimarycircuitsEquipmentarchitectureNoémie,Chagnon-Lessard.Geothermalpowerplantswithmaximizedspecificpoweroutput:OptimalworkingfluidandoperatingconditionsofsubcriticalandtranscriticalOrganicRankineCycles[J].Geothermics,2016,(64):111-12431TanscriticalcycleORCPrimarycircuitsSecondarycircuitsEquipmentarchitectureThermodynamicdiagramSecondarycircuitsState1:saturatedliquidState2:desiredpressureState3:superheatvaporNoémie,Chagnon-Lessard.Geothermalpowerplantswithmaximizedspecificpoweroutput:OptimalworkingfluidandoperatingconditionsofsubcriticalandtranscriticalOrganicRankineCycles[J].Geothermics,2016,(64):111-12432Kalina循環(huán)33Kalina循環(huán)簡(jiǎn)介:在1984年,由美籍蘇聯(lián)猶太人Kalina在美國(guó)動(dòng)力學(xué)術(shù)會(huì)議上宣布了由他創(chuàng)導(dǎo)的動(dòng)力循環(huán)系統(tǒng),命名為Kalina循環(huán)。是一種以氨水混合物作為工質(zhì)的新型動(dòng)力循環(huán)系統(tǒng)。針對(duì)不同溫度的熱源情況,不同形式的Kalina循環(huán)的應(yīng)用范圍不同,其中KCS1主要用于總輸出容量小于20MW或者低于8MW的底循環(huán)式機(jī)組;KCS6在所有卡琳娜循環(huán)系統(tǒng)中其效率最高,主要用于蒸汽---燃?xì)饴?lián)合循環(huán)的底循環(huán)中;KCS5專門用于直燃式電廠中;在中低溫地?zé)岚l(fā)電,KCS11的性能較優(yōu);KCS34適宜于溫度低于121攝氏度的低溫?zé)嵩窗l(fā)電。34Kalina循環(huán)Kalina循環(huán)在各地區(qū)應(yīng)用的實(shí)例35朗肯循環(huán)系統(tǒng)原理圖Kalina循環(huán)與朗肯循環(huán)比較36Kalina循環(huán)系統(tǒng)原理圖富氨基液貧氨Kalina循環(huán)與朗肯循環(huán)比較37Kalina循環(huán)與傳統(tǒng)發(fā)電循環(huán)的比較
(一)與傳統(tǒng)水蒸氣朗肯循環(huán)相比,氨水工質(zhì)的沸點(diǎn)比較低,易于蒸發(fā),在較低的熱源加熱下就能夠達(dá)到蒸汽狀態(tài),所以可以利用其回收中低溫的地?zé)嵩促Y源;(二)實(shí)際有機(jī)純工質(zhì)的的蒸發(fā)過程是等溫蒸發(fā),不能緊密配合中低溫?zé)嵩吹姆艧徇^程,造成換熱平均溫差較大,不可逆損失增加,而氨水作為混合工質(zhì),其蒸發(fā)冷凝過程中是變溫過程,存在溫度滑移,先對(duì)于純工質(zhì)而言,這使得其在換熱過程中能很好的與熱源變溫特性相匹配,從而減小換熱過程中的不可逆損失,提高熱能利用效率。(三)冷凝過程中,純工質(zhì)屬于等溫冷凝,不可逆損失相對(duì)較大,但在氨水混合工質(zhì)冷凝過程中,溫度產(chǎn)生滑移,不可逆損失相對(duì)較小,提高熱能利用效率。(四)與有機(jī)朗肯循環(huán)相比,氨水屬于自然工質(zhì),價(jià)格便宜,易于獲得,其對(duì)環(huán)境破壞力較弱,環(huán)保性能由于有機(jī)工質(zhì);(五)另外氨的分子數(shù)與水的分子數(shù)相差非常小,所以氨水蒸汽蒸汽透平在結(jié)構(gòu)設(shè)計(jì)上可以借鑒技術(shù)已經(jīng)相對(duì)成熟的蒸汽透平設(shè)計(jì)。(在一定程度上使氨水透平快速展)(六)Kalina循環(huán)比傳統(tǒng)的蒸汽式朗肯循環(huán)的熱效率要高。38優(yōu)化設(shè)計(jì)系統(tǒng)參數(shù)系統(tǒng)功能系統(tǒng)結(jié)構(gòu)優(yōu)化設(shè)計(jì)39優(yōu)化設(shè)計(jì)(一)系統(tǒng)關(guān)鍵參數(shù)的優(yōu)化選擇:卡琳娜循環(huán)中影響系統(tǒng)的主要參數(shù)有基本氨水濃度蒸發(fā)壓力(即汽輪機(jī)入口壓力),冷源溫度,熱源溫度等。下面討論過程均在其他參數(shù)不變的情況下,分析單一參數(shù)對(duì)循環(huán)性能的影響,從而確定最佳循環(huán)參數(shù)。[中低溫?zé)嵩吹目漳妊h(huán)系統(tǒng)分析及優(yōu)化設(shè)計(jì)]作者孟金英40優(yōu)化設(shè)計(jì)(一)基本氨水工質(zhì)濃度對(duì)循環(huán)性能的影響??漳妊h(huán)的初始給定條件41優(yōu)化設(shè)計(jì)(一)凈輸出功和基液濃度的關(guān)系從做功量的角度分析42優(yōu)化設(shè)計(jì)(一)系統(tǒng)熱效率與基液濃度的關(guān)系從熱力學(xué)第一定律角度分析43優(yōu)化設(shè)計(jì)(一)系統(tǒng)火用效率與基液濃度關(guān)系從熱力學(xué)第二定律角度分析44優(yōu)化設(shè)計(jì)(二)卡琳娜功冷聯(lián)供系統(tǒng)在卡琳娜循環(huán)中,從分離器流出的貧氨溶液屬于高溫高壓流體,而回?zé)崞鞯脑O(shè)置僅僅對(duì)其熱能進(jìn)行了利用,但在流體經(jīng)過節(jié)流閥節(jié)流降壓過程中,導(dǎo)致大量高能的損失,如果能將這一部分能量加以回收利用,將隨提高系統(tǒng)性能有重要的意義。目前對(duì)于高壓能回收利用的主要方式有汽輪機(jī)兩相膨脹機(jī)和噴射器,這里采用的是噴射器??漳裙渎?lián)供系統(tǒng)原理圖45優(yōu)化設(shè)計(jì)(二)噴射器結(jié)構(gòu)原理圖46優(yōu)化設(shè)計(jì)(三)一次抽氣回?zé)崾終CS34-X原理圖一次抽氣回?zé)崾終CS34-X,高濃度氨飽和蒸汽進(jìn)入透平,絕熱膨脹做功,抽出流量系數(shù)為α的蒸汽引入加熱器,其余的(1-α)的蒸汽繼續(xù)膨脹做功到乏氣壓力。乏汽進(jìn)入混合后進(jìn)入冷凝器,冷凝成飽和液體,經(jīng)泵1升壓后在加熱器中與α的抽氣混合,流出加熱起的工質(zhì)為飽和液體,經(jīng)泵2升壓后進(jìn)入換熱器,完成整個(gè)循環(huán)過程47優(yōu)化設(shè)計(jì)(三)一次抽氣二次抽氣分級(jí)抽氣回?zé)崾終CS34-Y原理圖分級(jí)抽汽回?zé)崾終CS34-Y,高濃度氨飽和蒸汽進(jìn)入透平,絕熱膨脹做功,抽出流量系數(shù)為α的蒸汽引入加熱器,其余的(1-α)的蒸汽繼續(xù)膨脹,在一定壓力下再抽出流量系數(shù)為β的蒸汽,剩余蒸汽繼續(xù)膨脹至乏汽壓力。乏汽與來(lái)自分離器的貧氨溶液混合,經(jīng)冷凝器冷凝,由泵升壓后與二次抽汽氣體混合,經(jīng)泵加壓后進(jìn)入加熱器2,由一次抽汽的氣體加熱,經(jīng)泵3加壓進(jìn)入換熱器,完成整個(gè)循環(huán)。48優(yōu)化設(shè)計(jì)總結(jié)朗肯循環(huán)Kalina循環(huán)+吸收式制冷的部分原理49優(yōu)化設(shè)計(jì)總結(jié)Kalina循環(huán)Kalina功冷聯(lián)供循環(huán)+氨水蒸發(fā)式制冷50優(yōu)化設(shè)計(jì)總結(jié)Kalina循環(huán)+一次抽汽式朗肯循環(huán)一次抽汽式Kalina循環(huán)51優(yōu)化設(shè)計(jì)總結(jié)Kalina循環(huán)多級(jí)抽汽式Kalina循環(huán)+多級(jí)抽汽回?zé)崾嚼士涎h(huán)52
地源熱泵技術(shù)53地源熱泵技術(shù)行業(yè)背景1、隨著人們的生活水平不斷提高,對(duì)建筑環(huán)境的要求也越來(lái)越高。暖通空調(diào)作為高層建筑必不可少的機(jī)電設(shè)備,在給人們營(yíng)造了舒適的居住環(huán)境的同時(shí),也造成了極大的能源浪費(fèi)。(我國(guó):暖通空調(diào)能耗/全國(guó)總能耗22.75%)2、地源熱泵技術(shù)是一種利用地源能作為熱泵夏季制冷的冷卻源、冬季采暖供熱的低溫?zé)嵩吹南到y(tǒng),實(shí)現(xiàn)向建筑物提供采暖、制冷和生活熱水的高效節(jié)能環(huán)保型空調(diào)技術(shù)。它用來(lái)替代傳統(tǒng)的用制冷機(jī)和鍋爐進(jìn)行空調(diào)、采暖和供熱的模式,是改善城市大氣環(huán)境和節(jié)約能源的一種有效途徑,也是地源能利用的一個(gè)新發(fā)展方向。
我國(guó)地源熱泵技術(shù)研究進(jìn)展和產(chǎn)業(yè)發(fā)展探討_湯志遠(yuǎn)中國(guó)地源熱泵技術(shù)發(fā)展與展望_徐偉54地源熱泵系統(tǒng)的分類根據(jù)地?zé)崮芟到y(tǒng)形式的不同,地源熱泵系統(tǒng)可分為:①地埋管地源熱泵系統(tǒng):利用地下巖土層中熱量進(jìn)行閉路循環(huán)的熱泵系統(tǒng)。熱泵的換熱器埋于地下,與大地進(jìn)行冷熱交換。②地下水地源熱泵系統(tǒng):熱源是從水井或廢棄的礦井中抽取的地下水。最常用的系統(tǒng)形式是采用一側(cè)連接地下水,一側(cè)連接熱泵機(jī)組(板式換熱器)。③地表水地源熱泵系統(tǒng):熱源是池塘、湖泊或河溪中的地表水。中國(guó)地源熱泵技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)_徐偉55國(guó)外地源熱泵發(fā)展歷程1、1912年,瑞士的H.Zoelly首次提出利用淺層地?zé)崮茏鳛闊岜孟到y(tǒng)低溫?zé)嵩吹母拍?。(一次能源充足?、20世紀(jì)50年代,美國(guó)和歐洲國(guó)家開始研究和利用地源熱泵,但熱泵系統(tǒng)相對(duì)利用成本較高,并沒有得到推廣。(一次能源價(jià)格較低)3、1973年至今,由于石油危機(jī)的出現(xiàn)和環(huán)境的惡化,美國(guó)和歐洲加大了對(duì)地源熱泵的研究和利用。(能源危機(jī))F國(guó)際地源熱泵技術(shù)發(fā)展及工程應(yīng)用情況_張時(shí)聰一次能源供應(yīng)地源熱泵技術(shù)56國(guó)外地源熱泵發(fā)展概況1、早在20世紀(jì)50年代,美國(guó)市場(chǎng)上就開始出現(xiàn)以地下水或者河湖水作為熱源的地源熱泵系統(tǒng),并用它來(lái)實(shí)現(xiàn)采暖。(直接式、腐蝕、使用年限較短)2、上世紀(jì)70年代末80年代初,在能源危機(jī)的促使下,人們又開始重新關(guān)注地下水源熱泵,通過技術(shù)改進(jìn),地下水源熱泵得到廣泛利用。(歐洲板式換熱器,擴(kuò)大水源熱泵機(jī)組進(jìn)水溫度范圍)3、土壤源熱泵系統(tǒng)的應(yīng)用:美國(guó)橡樹山和布魯克海文等國(guó)家實(shí)驗(yàn)室和研究機(jī)構(gòu)對(duì)地下?lián)Q熱器的傳熱特性、土壤的熱物性、不同形式埋管換熱器性能的比較進(jìn)行了大量的研究。(地埋管為聚乙烯等塑料管、避免了腐蝕問題)4、1983~2010年美國(guó)地源熱泵年平均增長(zhǎng)率保持在保持在15%以上。F國(guó)際地源熱泵技術(shù)發(fā)展及工程應(yīng)用情況_張時(shí)聰57國(guó)外地源熱泵技術(shù)應(yīng)用和研究概況國(guó)際地源熱泵技術(shù)應(yīng)用發(fā)展的關(guān)注點(diǎn):系統(tǒng)的研究(提高效率、冷熱聯(lián)供)部件的研究(減少熱阻、制冷劑、壓縮機(jī)性能)輔助設(shè)計(jì)軟件的研究(數(shù)值模擬)環(huán)保節(jié)能地源熱泵技術(shù)應(yīng)用研究_仉安娜58我國(guó)地源熱泵發(fā)展歷程地源熱泵在我國(guó)的發(fā)展可以分為三個(gè)階段:
起步階段(20世紀(jì)80年代—21世紀(jì)初)一些高等院校開始了關(guān)于地?zé)峁┡睦碚撆c實(shí)驗(yàn)研究,1989年,青島建筑工程學(xué)院和瑞典皇家工學(xué)院建立了第一個(gè)關(guān)于水平埋管的地埋管地源熱泵實(shí)驗(yàn)室。推廣階段(21世紀(jì)初-2004年)進(jìn)入21世紀(jì)后,地源熱泵在中國(guó)的應(yīng)用越來(lái)越廣泛,相關(guān)科學(xué)研究也極其活躍,有關(guān)熱泵的文獻(xiàn)數(shù)量劇增。2000年~2003年平均專利為1989-1999年平均專利的4.9倍。
中國(guó)地源熱泵發(fā)展研究報(bào)告_徐偉59我國(guó)地源熱泵發(fā)展歷程
快速發(fā)展階段(2005年---至今)從全國(guó)范圍看來(lái),現(xiàn)有工程數(shù)量已經(jīng)達(dá)到7000多個(gè),總面積達(dá)1.39億,80%的項(xiàng)目集中在我國(guó)華北和東北南部地區(qū)。2010年上海世博場(chǎng)館和2008年的北京奧運(yùn)會(huì)場(chǎng)館為我國(guó)地源熱泵技術(shù)應(yīng)用最為成功的典范。中國(guó)地源熱泵發(fā)展研究報(bào)告_徐偉60我國(guó)地源熱泵發(fā)展特點(diǎn)1、覆蓋面廣,各種建筑類型都有應(yīng)用2、各種熱泵系統(tǒng)類型均有應(yīng)用3、用于北方供熱居多4、用于城市城郊居多,農(nóng)村很少
中國(guó)地源熱泵技術(shù)應(yīng)用發(fā)展情況調(diào)查報(bào)告_呂悅61我國(guó)地源熱泵技術(shù)應(yīng)用概況1、淺層地?zé)崮苷{(diào)查評(píng)價(jià)2、鉆孔熱反應(yīng)測(cè)試技術(shù):地層熱物性現(xiàn)場(chǎng)原位測(cè)試技術(shù),包括地層導(dǎo)熱系數(shù)和鉆孔熱阻3、高效地下熱交換井技術(shù):地下?lián)Q熱器的類型、回填材料的性能4、地源熱泵與太陽(yáng)能聯(lián)合技術(shù):利用太陽(yáng)能等其他能源作為輔助供熱或者進(jìn)行地下儲(chǔ)能,可大幅度提高地源熱泵系統(tǒng)的效率
我國(guó)地源熱泵技術(shù)研究進(jìn)展和產(chǎn)業(yè)發(fā)展探討_湯志遠(yuǎn)62ThermodynamicPrinciplesADCBTST2T1S1S2T1T2Q1Q2WHightemperatureLowtemperature0
Figure1.
ACarnotcycleactingasaheatengine,illustratedonatemperature-entropydiagram.Figure2.
AclassicalCarnotheatengineEngineeringThermodynamicsCarnotcycleCarnotheatengine63ThermodynamicPrinciplesADCBTST2T1S1S2T2T1Q2Q1WLowtemperatureHightemperature0
Figure3.
AreverseCarnotcycleactingasarefrigeratororaheatpump,illustratedonatemperature-entropydiagram.Figure4.
ArefrigeratororheatpumpEngineeringThermodynamicsReverseCarnotcycleRefrigerator/Heatpump64WorkingprinciplesFancoilorradiatorwaterFigure5.GroundsourceheatpumpheatingsystemHeating65WorkingprinciplesFigure6.GroundsourceheatpumpcoolingsystemFancoilorradiatorwaterCooling66WorkingMediumDifferenttypesofworkingmedium67WorkingMediumStudyontheperformanceofagroundsourceheatpumpusingR22andit’sSubstitutes
SubstitutescomponentsconcentrationsR404AR407CR125/R134a/R143aR32/R125/R134a44/52/423/25/52R410AR410BR32/R125R32/R12550/5045/55Table1
R22SubstitutesrecommendedbyASHRAER22&It’sSubstitutesTable2
R22SubstitutesrecommendedbyARISubstitutesconcentrationsR290R134a------------R717R32/R134aR32/R227ea------30/7035/6568WorkingMediumThermalperformance(Summer)COP
StudyontheperformanceofagroundsourceheatpumpusingR22andit’sSubstitutes
Resultanalysis:BothR22and
it’sSubstituteshavesimilarcoolingcoefficient(R717(NH3)>R32/R134a>R134a>R22>R290>R407c>R32/227ea>R404a>R410A>R410B)R22sharesthesimilarvolumerefrigeratingcapacitywithR717(NH3),R32/227ea,R404a,R407c,
R32/R134aHighest:R410A>R410BLowest:R290>R134aEvaporationtemperature/℃Evaporationtemperature/℃69WorkingMediumStudyontheperformanceofagroundsourceheatpumpusingR22andit’sSubstitutes
TypicalPerformanceComparison(summer)CoolingcoefficientCondensationpressure/kPaEvaporationpressure/kPaPressureratioCondensationphasetransitiontemperature
/℃Evaporationphasetransitiontemperature/℃Exhausttemperature/℃Table3
ComparativedateforR22andalternativesforTc=35℃andTe=5℃
Overcooling
degree
=5℃,Overheatingdegree=5℃,Adiabaticefficiencyofcompressor=78%70WorkingMediumCOP
StudyontheperformanceofagroundsourceheatpumpusingR22andit’sSubstitutes
Resultanalysis:BothR22and
it’sSubstituteshavesimilarheatingcoefficient(R717(NH3)>R32/R134a>R134a>R22>R290>R407c>R32/227ea>R404a>R410A>R410B)R22sharesthesimilarvolumeheatingcapacitywithR717(NH3),R32/227ea,R404a,R407c,R32/R134aHighest:R410A>R410BLowest:R290>R134aThermalperformance(Winter)Condensingtemperature/℃Condensingtemperature/℃71WorkingMediumStudyontheperformanceofagroundsourceheatpumpusingR22andit’sSubstitutes
TypicalPerformanceComparison(winter)HeatingcoefficientCondensationpressure/kPaEvaporationpressure
/kPaPressureratioCondensationphasetransitiontemperature
/℃Evaporationphasetransitiontemperature/℃Exhausttemperature/℃Table4
ComparativedateforR22andalternativesforTc=55℃andTe=5℃Overcooling
degree
=5℃,Overheatingdegree=5℃,Adiabaticefficiencyofcompressor=78%72WorkingMediumStudyontheperformanceofagroundsourceheatpumpusingR22andit’sSubstitutes
ResultsWhenGSHPoperatedwithinit’sworkingtemperature:Coolingcoefficientreached5insummerHeatingcoefficientreached4inwinterAllofthesubstitutessharethesimilarCOPwithR22,buttheirthermalperformances
aredifferent.R32/R134a,R407c,R404aareidealsubstitutesofR2273Applic
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具購(gòu)銷的簡(jiǎn)單合同范本
- 全新財(cái)務(wù)人員勞動(dòng)合同
- 大樓物業(yè)管理委托合同
- 后八輪自卸車租賃合同范本
- 滬教版(上海)七年級(jí)地理第一學(xué)期祖國(guó)篇(上)4.3《長(zhǎng)江》聽課評(píng)課記錄
- 股東合作協(xié)議合同模板
- 加盟合同協(xié)議書范本
- 攪拌站礦粉購(gòu)銷簡(jiǎn)易合同
- 《研究性學(xué)習(xí)》課程實(shí)施方案
- 合同書樣本范文電子版
- 藥用植物種植制度和土壤耕作技術(shù)
- 《火力發(fā)電企業(yè)設(shè)備點(diǎn)檢定修管理導(dǎo)則》
- 重慶市渝北區(qū)2024年八年級(jí)下冊(cè)數(shù)學(xué)期末統(tǒng)考模擬試題含解析
- 保安服務(wù)項(xiàng)目信息反饋溝通機(jī)制
- 《團(tuán)隊(duì)介紹模板》課件
- 常用中醫(yī)適宜技術(shù)目錄
- 沖壓模具價(jià)格估算方法
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第十一章運(yùn)動(dòng)技能的練習(xí)
- 蟲洞書簡(jiǎn)全套8本
- 2023年《反電信網(wǎng)絡(luò)詐騙法》專題普法宣傳
- 小學(xué)數(shù)學(xué)五年級(jí)上、下冊(cè)口算題大全
評(píng)論
0/150
提交評(píng)論