版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
DredgingEngineering-Part2soil疏浚工程土質(zhì)篇
Chapter1BasicConceptsofSoilMechanics1
1.1SoilClassification1
1.2SoilProperties1
1.2.1PhaseRelationshipsofSoil2
1.2.2Compactionand/orConsistency2
1.2.3Permeability2
1.3
ElementarySoilTests7
1.3.1PermeabilityTest7
1.3.2MohrCircle8
1.3.3CaseStudy10
1.3.4TriaxialShearTestMohrFailureEnvelop12
1.3.5DirectShearTestCoulomb’sLaw(1776)13
1.3.6StandardPenetrationTest--SPT16
1.4
PassiveandActiveFailure—Rankine’sTheoryofLateralEarthPressure17
1.4.1ActiveStressState18
1.4.2PassiveStressState20
1.5
StressesintheSubsoil20
1.5.1General20
1.5.2DeterminationofVerticalStresses22
1.5.3OverstressedorUnderstressedPoreWaterinaClayLayer24
1.6Consolidation25
Acknowledgements25
Part2
DredgingProcess
Chapter1BasicConceptsofSoilMechanics
1.1SoilClassification
Theobjectofsoilclassificationistodividethesoilintogroupssothatallthesoilsinaparticulargrouphavesimilarcharacteristicsbywhichtheymaybeidentified.Inpractice,therearemanydifferentclassificationsareusedbydifferentinstitutions,mostoftheseclassificationsystemsarebasedontheoutcomeoftheparticlesizedistributionanalysesandtheresultsoftheplotsontheplasticitychartofCasagrande.Table1-1istheinternationallymostacceptedstandardizationofparticle-size-ranges.
Table1-1Internationallymostacceptedstandardizationofparticle-size-ranges.
fine-grained
coarse-grained
Clay
Silt
sand
gravel
stone
Colloids
fine
2~6
medium
6~20
Coarse
20~60
fine
60~200
medium
200~600
coarse
600~2mm
fine
2~6
medium
6~20
coarse
20~60
cobbles
60~200
boulders
200~
μm(micron)
mm
Table1-2showstheBritishSoilClassificationSystemforEngineeringpurpose(BS5930,1981).Thenameanddescriptivelettersusedinthissystemareexplainedintable1-3.
1.2SoilProperties
1.2.1PhaseRelationshipsofSoil
Soilisamultiphasesystem,containingthreedistinctphases:solid,liquid(water)andgas(air).Inrealitytheporesinbetweenthesolidparticlesarefilledwithwaterand/orgas,figure1-1(a);however,inordertodefinethephaserelationships,anelementofsoilisschematizedinfigure1-1(b).
1.2.2Compactionand/orConsistency
Fornaturaldepositsofsoilsthecompactionoftheencounteredlayerin-situisanimportantfeature.Thecompactionofanin-situsandlayerdependsonlargelyontheparticlesizedistribution(figure1-2),themodeofsedimentationandthestresshistory.Forclaysthecompactionmoreorlessdependsonthesamefeaturesbutissomewhatmorecomplicatedbecauseforclaystheinteractionbetweenclayparticlesdependsalsoontheelectricalchargesonthesurfaceoftheparticles.Thereforeitiscommonpracticetodistinguishthenotationcompactionforgranularsoils,whichisexpressedintherelativedensityDrandthenotationconsistencyforcohesivesoils,whichisexpressedintheunstrainedshearstrengthCu.Seetable1-4.
1.2.3Permeability
Thepermeabilityofthesoildeterminestherateofingressofwaterintothesoil,eitherbygravitationalfloworbydiffusion.Sincetheindividualsandparticlesarenotbondedtogetherbyhydratedwaterandsincetheparticlesarerelativelylarge,thereisaneasyaccessofwaterintothepores.Thereforesandhasagoodpermeability(permeabilityvariesbetweenk=10-2mm/sandk=10-4mm/s).However,claysarealmostimpermeable(permeabilityvariesbetweenk=10-6mm/sandk=10-8mm/s).Thetwomainreasonsforthisverylowpermeabilityare:(1)theparticlesareverysmalli.e.ofcolloidalsize;(2)thewatersurroundingtheclayparticlesispartlyhydratedand/orelectricallybondedtotheparticleandthereforetheflowofwaterenteringtheporesisverydifficult.
Permeabilityisanimportantsoilpropertythatvariesconsiderablyfordifferenttypesofsoils,asshownintable1-5.Relationsbetweensoiltypeandsoilparametersarelistedintable1-6.
Table1-2BritishSoilClassificationSystemforEngineeringPurposes
Table1-3Namesanddescriptivesymbolsforgradingandplasticitycharacteristics,usedintheBritishSoilClassificationSystemforEngineeringpurposes.
Component
Mainterm
Symbol
Qualifying
Symbol
Coarse
Gravel
Sand
G
S
Wellgraded
Poorlygraded
Poorlygraded,uniform
Poorlygapgraded
W
P
Pu
Pg
Fine
Finesoil,fines
Silt(M-soil)
Clay
F
M
C
Lowplasticity
Intermediateplasticity
Highplasticity
Veryhighplasticity
Extremelyhighplasticity
L
I
H
V
E
Organic
Peat
Pt
Organic
O
Fig.1-2Particlesizedistribution
Table1-4
Compactionofgranularsoils
Consistencyofcohesivesoils
classification
Dr
Classification
Cu[kN/m2]
Veryloose
Loose
Mediumdense
Dense
Verydense
0<15
15-35
35-65
65-85
85-100
Verysoft
Soft
Firmormedium
Stiff
Verystifforhard
<20
20-40
40-75
75-150
>150
Table1-5
Table1-6RelationbetweensoiltypeandsoilparameterstoNEN6740.
1.3
ElementarySoilTests
1.3.1PermeabilityTest
Alreadyinthemiddleofthe19thcentury(1850’s)Darcyexperimentallyfoundhisfamouslaw,whenhestudiedtheflowpropertiesofwaterthroughasand-filter-bed.Forhisexperimentsheusedaset-upsimilartothatshowninFig1-3,withwhichhecouldvarythelength(L)ofthesampleandthewaterpressuresatthetopandatthebottom.
Darcyexperimentallyfoundthatthearteofflow(Q)isproportionaltothefallofhead:
Andinverselyproportionaltothelength(L)ofthesample:
SinceQdenotesthetotaldischarge[m3/s]passingthroughthecross-sectionalarea
A[m2]ofthesamplecontainer,itwillbeclearthatthespecificrateofthefloworspecificdischarge(q)hasthedimensionofavelocity[m/s]andalsorepresentsthevelocityvofthefreewaterinthetubewherethereisnosand.
Thereal(average)velocitywithwhichthewaterpassestheporechannelsinsidethesandsampleiscalledtheseepagevelocity(Vs)andcanbedefinedbyusingtheprincipleofcontinuity.Thedischargeofwaterpassingthetotalarea(A)abovethesandsampleperunittimemustalsopassthereducedaveragearea
(Ap)oftheporechannelsinthesametime:
or
Theconstant(k)usedintheformulaaboveisthecoefficientofpermeabilitywhichhasthedimensionofavelocity[mm/s]andisanimportantsoilpropertywhichvariesconsiderablyfordifferenttypesofsoils,asshowninTable1-5.Itshouldbenotedthatkvaluesstrictlyapplytowater(200C).Allotherliquidswillhaveothervaluesforthepermeationconstant,dependingontheviscosity.
Fig.1-3Determinationofthecoefficientofpermeability
1.3.2MohrCircle
Inalmostallsoilmechanicsandfoundationengineeringproblems,whereconcentratedloadsareapplied,thehorizontalandverticalstresscomponentswillnotbeprincipalstresses:i.e.alsoshearstresseswillactonthehorizontalandverticalplanes.
Fig1-4
Determinationofforcesactingonaninclinedplane
Asamatteroffactspeakingofthe〝stressstate〞inapointofthesubsoilismeaningless,withoutmentioningtheorientationoftheplaneofinterestonwhichtheforcesact.Thereforethecompletestress-stateinapointofthesubsoilcanonlybedefinedbythestress-tensor.
Ofcourseinagivensituationthestress-tensorinanypointinthesubsoilcanbedefinedinathree-dimensionalorthogonalcoordinatesystem.However,forreasonsofsymmetry,inmostcasestheresultantofforcesactingonaparticleofsoilliesinaverticalplane.Thereforeinmostsituationsitwillsufficetoconsiderthestressesinthisplaneusingatwo-dimensionalorthogonalcoordinatesystemwithahorizontal(x)axisandavertical(z)axis.
Ifthenormalstressesandshearstressesactingonasmallelementofsoilinx-andz-directionaregiven,thenthenormalstressandshearstressactingonanyotherplanewithgiveninclinationθcanbedetermined(Fig.1-4):
Incasetheprincipalplanesareorientatedparalleltothex-andz-directionthennoshearforcesactontheseprincipalplanesandthenormalstressesactingontheprincipalplanesbecomeprincipalstresses,forexample,
Thereforeinthisspecialcase,
Since,fromamathematicalpointofview,thesetwoequationsrepresentacircle,Mohrproposedtoplotthiscircle,knownasMohrcircleintheσ-τdiagram,seeFig.1-5
Fromthisfigureitcanbeobserved:
σ1=majorprincipalstress;
(2)σ3=minorprincipalstress;
Thecenter(C)oftheciecleliesontheσ-axisatadistance
OC=p=(σ1+σ3)/2
Theradiusofthecircleisq=(σ1-σ3)/2;
(σ1-σ3)iscalledthediviatorstressorthestressdifference;
Aiscalledthestresspointrepresentingtheresultingstressσr?actingontheplanewithaninclinationθ(betweenthedirectionof?σ1andthenormalonthisplane);
Thisresultingstressσrcanberesolvedinanormalstressandashearstressτθandtheangleα?betweenσrandthenormaltotheplanecanbefoundinthediagram,since
tanα=τθ/σθ=AB/OB,α=AOB;
Note,inthisspecialcase,thepole(P),alsocalledtheoriginofplanescoincideswiththepositionofσ3.ThepolePisapointontheMohrcircle,withthefollowingproperty:alinethroughthepolePandanypointAoftheMohrcirclewillbeparalleltotheplaneonwhichthestresspairgivenbypointAacts;
Themaximumshearstressτmax=q=(σ1-σ3)/2willbeobtainedinaplanewithanorientationθ=450.
Fig.1-6TheMohrcircleconstruction
1.3.3CaseStudy
Ifinapointinthesubsoilthenormalstressesandshearstressesactingontwoorthogonalplaneswithaknownorientation,forexamplerelativetothehorizontal,aregiven,Fig.1-7,thenitispossibletodeterminethemagnitudeanddirectionoftheprincipalstresseswiththeaidoftheMohrdiagram.
Thisisillustratedintheexamplebelow:
Fig.1-7Mohrcircleconstructiontofindthemagnitudeanddirectionofσ1andσ3
Graphicalsolution:
PlotthestresspointA’(25,15)andB’(65,15);
DrawtheA’B’tofindthecenterC(45,0)ofthecircle;
ErectoftheMohrcirclethroughA’andB’;
Readmagnitudeofσ1=70kN/m2andσ3=20kN/m2;
FindthepolePbydrawingalinethroughB’paralleltoBB(orthroughA’paralleltoAA);
FindthedirectionoftheprincipalplanesbydrawinglinesthroughthepoleàPσ1andPσ3;
Thedirectionoftheprincipalstressesactsperpendiculartotheprincipalplanes.Inthiscasethedirectionofσ1is450relativetothehorizontal.
Analyticalsolution:
1)Thesumofthenormalstressesisconstant:
(Notethisisthecoordinate(45,0)ofthecenterCofthecircle)
2)Theradiusofthecircleisdefinedby:
3)Combining1)and2):
4)Tofindthedirectionofσ1usethestresspairinwhichσθislargestàσθ=65kN/m2andτθ=+15kN/m2:
2θ=36.8700andthereforeθ=18.4350.
So,relativetothedirectionofσ1thedirectionofσθis(positive)àanti-clockwise(seesign.conventionfigure1-4).
Thedirectionofσθ
relativetothehorizontalαisgivenby,
thefigure1-7,tanα=2/1=2à
α=63.4350
Thedirectionofσθ
relativetoσ1was
θ=18.4350
Thedirectionofσ1
relativetothehorizontalis
(α-θ)=45.0000
1.3.4TriaxialShearTestMohrFailureEnvelop
Themostreliablesheartestisthetriaxialdireststresstest(Fig.1-8).Acylindricalsoilsamplewithalengthofatleasttwiceitsdiameteriswrappedinarubbermembraneandplacedinatriaxialchamber.Aspecificlateralpressure,calledchamberpressure,isappliedbymeansofwaterwithinthechamber.Thechamberpressureiskeptconstantduringeachtest.Averticalloadisthenappliedatthetopofthesampleandsteadilyandveryslowlyincreaseduntilthesamplefailsinshearalongadiagonalplane.TheMohrcirclesoffailurestressesforaseriesofsuchtestsusingdifferentvaluesofconfiningpressureareplottedasshowninFig.1-8.
Fig.1-8Triaxialsheartest,Mohrfailureenvelop(afterSower,FuHuaChen)
Thestressisuniformlydistributedonthefailureplane
Soilisfreetofailontheweakestsurface
Watercanbedrainedfromthesoilduringthetesttosimulateactualconditionsinthefield,seeFig.1-9,drainedtriaxialtestonasandsample.
Asmall-diametersamplecanbeusedandthesamplepreparationiseasy.
Triaxialsheartestapparatusiscostly.Mostconsultingengineerscannotaffordtheup-to-datecomputerizedreadout.Formostfoundationinvestigations,theuseoftriaxialsheartestsisnotjustified.Thebearingpressurevaluescanbeobtainedfromtheinterpretationoftheresultsoftheunconfinedcompressiontest.Onlyinmajorprojectssuchasearthdamconstruction,wherethevaluesofangleofinternalfrictionandcohesionarecritical,shouldthetriaxialsheartestbeconducted.Manyclientstodayconsiderthetriaxialsheartesttheapexofsoilinvestigation,andnosoilreportiscompletewithoutsuchdata.Itisbestforthenewlyestablishedconsultingfirmstospendtheirmoneyonfirldequipmentratherthanonthetriaxialshearapparatus.
Fig.1-9Drainedtriaxialsheartestonasandsample
1.3.5DirectShearTestCoulomb’sLaw(1776)
Thedirectsheartest(Fig.1-10)istheearliestmethodfortestingsoilshearingstrength.TheBoxShearapparatusconsistsofarectangularboxwithatopthatcanslideoverthebottomhalf.NormalloadisappliedverticallyatthetopoftheboxasshowninFig.1-11and1-12.
AshearingforceisappliedtothetophalfoftheboxFig.1-13,shearingthesamplealongthehorizontalsurface,andtheshearstressthatproducestheshearfailureisrecorded.Theoperationisrepeatedseveraltimesunderdifferentnormalloads.Theresultingvaluesofshearingstrengthagainstnormalloadsareplottedandtheangleofinternalfrictionandcohesionvaluedetermined.SeeFig.1-14.
Fig.1-11Directsheartest
Fig.1-12Directsheartestapparatus(afterLiu&FuHuaChen)
Fig.1-13Principleofdirectshearbox
Coulombfirstexperimentedwithsands,laterwithothertypesofsoilandusedporousstonestoallowforadrainedcondition,i.e.u=0.HeindeedfoundalinearrelationshipbetweenTandNor,sincethearea(A)oftheslidingplaneisknown,betweentheshearstressatfailureτfandthenormaleffectivestressσ’
Inwhich
φ’=angleoftheinternalfriction
c’=(apparent)cohesion
Mathematicallyseentheformularepresentsapairofstraightborderlines(thelinebelowtheσ’axisapplieswhenthedirectionofTisreversed)intheσ’-τdiagram.Allstresspairsinbetweenthesetwolinesrepresentsastressstateofequilibriuminthesoil;allstresspointsoutsidethesetwoborderlinesrepresentsastressstateoffailureinthesoil.
Fig.1-14Coulomb’sfailurelinesintheσ’-τdiagram
WhenCoulomb’sfailurelineisconsideredagain,itisevidentthattheultimatestateofstressforanystresspoint(S)onthefailurelinecanberepresentedbyaMohrcircletouchingthatpointon
thefailureline,seeFig.1-15.However,thedirectsheartesthasthedisadvantagethattheactualstressstateisnotknownandthattheslidingplaneisinfactdeterminedinadvance.
Fig.1-15ultimatestressstaterepresentedbyaMohrcircletouchingCoulomb’sfailureline
Tensilefailure
InFig.1-15theCoulomb’sfailureintersectstheσ’axiswithσ’=σt=-c’cotanφ’,theintersectingpointTrepresentsatensilefailureinthesoil.
1.3.6StandardPenetrationTest--SPT
Probablytheoldestmethodoftestingsoilisthe〝PenetrationResistanceTest.〞InperformingthePenetrationResistanceTest,thesplitspoonsampleusedtotakesoilsamplesisutilized.Thesplitspoonisdrivenintothegroundbymeansof1140-lbhammerfallingafreeheightof30in.ThenumberofblowsNnecessarytoproduceapenetrationof12in.isregardedasthepenetrationresistance.Toavoidseatingerrors,theblowsforthefirst6in.ofpenetrationarenottakenintoaccount;thoserequiredtoincreasethepenetrationfor12in.constitutetheNvalue,alsocommonlyknownasthe〝blowcount〞.Thefollowingshouldbeconsideredinperformingthepenetrationtest:
DepthFactor—ThevalueofNincohesionlesssoilsisinfluencedtosomeextentbythedepthatwhichthetestismade.Thisisbecauseofthegreaterconfinementcausedbytheincreasingoverburdenpressure.Inthedesignofspreadfootingsonsand,acorrectionofpenetrationresistancevalueisnotexplicitlyrequired.Inotherproblems,particularlythoseconcernedwiththeliquefactionofsand,however,acorrectionisnecessary.
WaterTableWhenpenetrationiscarriedoutbelowthewatertableinfinesandsorsiltysands,theporepressuretendstobereducedinthevicinityofthesampler,resultinginatransientdecreaseinNvalue.
DrivingConditionsThemostsignificantfactoraffectingthepenetrationresistancevalueisthedrivingcondition.Itisessentialthatthedrivingconditionshouldnotbeabused.Thestandardpenetrationbarrelshouldnotbepackedbyoverdrivingsince,atthisforce,thesoilactsagainstthesidesofthebarrelandcausesincorrectreadings.Anincreaseinblowcountbyasmuchas50%cansometimesbecausedbyapackedbarrel.
CobbleEffectThebarrelwillbouncewhendrivingoncobbles;hence,nousefulvaluecanbeobtained.Sometimes,asmallpieceofgravelwilljamthebarrel,therebypreventingtheentranceofsoilintothebarrel,thussubstantiallyincreasingtheblowcount.
CaliforniaSamplerConsiderableeconomycanbeachievedbycombiningthepenetrationtestwithsamplingasdescribedunder〝undisturbedsample〞.FieldtestshavebeenconductedcomparingtheresultsofthepenetrationresistanceoftheCaliforniasamplerwiththoseofstandardpenetrationtests.Thetestsindicatethattheresultsarecommensurable,withtheexceptionofverysoftsoil(N<4)andverystiffordensesoil(N>30).Bycombiningthepenetrationresistancetestwithsampling,moretestscanbemadeandundisturbedsamplescanbeobtainedwithoutresortingtheuseofShelbytubes.
Withtheexceptionoftheareaofstandardfineloosesands,thedepthfactorandthewatertableelevationfactorcanbedisregarded.
Theresultsofthestandardpenetrationtestcanusuallybeusedforthedirectcorrelationwiththepertinentphysicalpropertiesofsoil,asshowninTable1-7.
Thecorrelationforclayasindicatedcanberegardedasnomorethanacrudeapproximation,butthatforsandsisreliableenoughtopermittheuseofN-valueinfoundationdesign.TheuseofNvaluebelow4andover50fordesignpurposesisnotdesirable,unlesssupplementedbyothertests.Someelaboratepile-drivingformulaearebasedonfieldpenetrationresistancevalue.Theyshouldbeusedwithcaution,astheerrorinvolvedinNvaluecanbemorethananyoftheothervariables.
Whendrivingonhardbedrockorsemi-hardbedrocksuchasshale,iftheamountofpenetrationisonlyafewinchesinsteadoffull12in.,itiscustomarytomultiplythevaluebyafactortoobtaintherequired12in..Forinstance,ifafter30blowsthepenetrationisonlytwoinches,itisassumedthattheNvalueis120.Suchanassumedvaluewhenusedforthedesignofthebearingcapacityofbedrockmightbeinerror.Analternativeisthepressuremetertestasdescribedbelow,whichmayofferabetteranswer.
Somecontractscallforapenetrationtestforevery5ftandsamplingatthesameintervaloreverychangeofsoilstratum.Thismaynotbenecessary.Thefieldengineershouldusehisorherjudgmenttoguidethefrequencyofsamplingandavoidunnecessarysamplingsothatthecostofinvestigationcanbeheldtoaminimum.Samplesintheupper10to15ftareimportant,asthisisgenerallythebearingstratumofshallowfootings.Soilcharacteristicsatthislevelalsogoverntheslab-on-gradeconstructionandearth-retainingstructures.Samplingandpenetrationtestsatlowerdepthsbecomecriticalwhenadeepfoundationsystemisrequired.
Table1-7PenetrationresistanceandsoilpropertiesoftheStandardPenetrationTest
Sands(fairlyreliable)
Clays(ratherreliable)
Numberofblows
Perft,N
Relativedensity
Numberofblows
Perft,N
consistency
0-4
4-10
10-30
30-50
over50
Veryloose
Loose
Medium
Dense
Verydense
Below2
2-4
4-8
5-15
15-30
over30
Verysoft
Soft
Medium
Stiff
Verystiff
hard
(afterPeck&FuHuaChen)
1.4
PassiveandActiveFailure—Rankine’sTheoryofLateralEarthPressure
Consideranoutstretchedterrainwithhorizontalsurface.Thesubsoilconsistsofhomogeneoussoilwithanangleofinternalfrictionφ’andc’.
Fig1-16Excavationwithinfiniterigidwallsembracedwiththrustswithhydraulicjacks
AssumethattheverticalsteelwallsoftheexcavationshowninFig.1-16areinfiniterigidandthewallfrictionbetweensteelandsoiliszero.
Wealreadyhavethefeelingthatthejackforcenecessarytopreventthewallsfrommovingtowardseachotherisconsiderablylessthanthejackforcenecessarytomovethewallsapartfromeachother.Whenthewallstendtomoveawayfromthemassofsoilbythelateralearthpressure,wespeakofactiveearthpressure;whenthelateralearthpressureresistsamovementagainstit,wespeakofapassiveearthpressure.
Letusconsideranelementofsoil,Fig.1-16.Sincethereisnofrictionbetweenwallandsoil,thehorizontalstressandverticalstressactingonthesoilelementareprincipalstressesandtheelementofsoilwillbehaveinexactlythesamewaylikeaspecimentestedintriaxialtest.Consideringthefactthattheverticalprincipalstressσ’vdoesnotalter,thequestiontoansweristodetermineσ’handtheinclination(tothevertical)ofthefailureplanefor:
theactivestressstate;
thepassivestressstate.
1.4.1ActiveStressState
FromtheMohrdiagram(Fig.1-17)itcanberead:
Let
whichiscalledthecoefficientofactivestress,thenwehave:
Forcohesivesoil:
Forcohesionlesssoil(c’=0):
Fig.1-17
Fromthefigureitcanbereadthat2αa=90+φ’àαa=450+φ’/2,whereαaistheinclinationbetweentheactivefailureplaneandthehorizontal.Hencetheanglebetweentheactivefailureplaneandtheverticalis±(450-φ’/2).
Note:ofcoursewhenanelementofsoilneartheleft-hand-wallinthefigureisconsidered,theslidingplanesindicatedbydashedlines()willoccur(τnegative).
1.4.2PassiveStressState
SimilarlyitcanbereadfromtheMohrdiagram:
Which,whenworkedoutsimilarly,resultsin:
Let
whichiscalledthecoefficientofpassivestress,thenwehave:
Forcohesivesoil:
Forcohesionlesssoil(c’=0):
Inexactlythesamewayitcanbederivedfromthefigurethattheinclinationofthepassivefailureplanesrelativetotheverticalis
±(450+φ’/2).
1.5
StressesintheSubsoil
1.5.1General
Thetransmissionofforcesinamassofdrygranularsoiliseffectuatedbynormalforces(N)andfrictionorshearforces(S)actingonthecontactareasbetweenindividualgrains.Sincetheeffectivecontactareabetweenindividualgrainsgenerallyisverysmall,thenormalstressesandshearstressesmayamounttoincrediblyhighvalues.Forexample,whenidealizedsphericalparticlesofequalsizeareconsidered(Fig.1-18),thenitwillbeclearthatthetheoreticalcontactareabetweentheparticlesdrawneartozeroandhencethetransmittedstressinthecontactpointdrawneartoaninfinitevalue.Howeverinreality,seenthroughthemicroscope,someelasticdeformationofthematerialwilloccuratthelocationofthecontactpointandhencetheactualcontactareaincreaseintoaflatfiniteareaofcircularshape,Fig1-18(b).Ifthematerialoftheparticlesisveryhardandbrittleitmayoccurthatsuchanelasticdeformationisinsufficienttocreatealargeenoughcontactarea,resultinginaplasticdeformationoreveninruptureofthecrystallinestructureàcrushedparticles.
Ofcourse,insoilmechanicsengineering,itwillbeunpracticaltoconsiderforcesandstressesbetweenindividualparticles.Therefore,basedontheassumptionthatinamassofdrysoilalltheforcesactingonbetweenindividualparticlesareinequilibrium,alsotheresultingforcesatanyarbitrarychosenplanemustbeinequilibrium,seeFig.1-19.
Fig.1-18Stresstransmissionbetweensphericalparticles
Fig.1-19Anarbitrarychosenplanethroughamassofdrysoil
EachofthebalancingresultantsR1,R2,R3,R4,………,actingontheplanecanberesolvedintoanormal(N)andtangential(T)component.Nowthen,consideringthetotalarea(A)oftheplanethestressesinsoilmechanicsaredefined:
Normaltotheplane:
effectivestress
In-plane:
shearstress
Thesymbolσ’andτ’(with‘)indicatethatthestressesareeffectivei.e.thatstressesactupongrainsinthesubsoilmass.Sometimesinliteraturethesymbolσeandτeareused.Insoilmechanicscompressivestressesarepositive(+).
Inthedefinitionabove,amassofdrysoilhasbeenconsidered.Whenthemassofthesoiliscompletelysaturated,thentheporesarefilledwithwaterunderpressure:u=porewaterpressure,whichineverypointactsperpendiculartothesurfaceofeachgrain.Therefore,whenanarbitrarychosenplaneisconsideredtheporewaterpressureuactsperpendiculartothetotalsurfaceareaofthisplane.Inthesectionthroughtheporesthereiswaterunderpressure;inthesectionthroughthegrainsthereisalsou,transmittedviathesolidgrains.So,combiningthecontactstressesbetweenparticlesandtheporewaterpressure,thetotalnormal
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年二年級(jí)班主任年度考核個(gè)人總結(jié)例文(二篇)
- 2025年個(gè)人租房的合同協(xié)議(4篇)
- 2025年企業(yè)公轉(zhuǎn)私借款合同模板(2篇)
- 民航旅客運(yùn)輸安全協(xié)議
- 文化產(chǎn)業(yè)土地交易居間協(xié)議
- 汽車維修傭金居間合同樣本
- 洗浴中心裝修安全合同
- 教育機(jī)構(gòu)貸款居間協(xié)議
- 汽車維修廠租賃居間協(xié)議
- 消費(fèi)品以舊換新策略在市場(chǎng)中的適應(yīng)性與優(yōu)化
- 《網(wǎng)店運(yùn)營(yíng)與管理》第3版 課件全套 白東蕊 第1-11章 網(wǎng)上開店概述- 移動(dòng)網(wǎng)店運(yùn)營(yíng)
- 2024年全國(guó)國(guó)家電網(wǎng)招聘之電網(wǎng)計(jì)算機(jī)考試歷年考試題(附答案)
- 化學(xué)元素周期表注音版
- 藥物過敏性休克
- T-GDASE 0042-2024 固定式液壓升降裝置安全技術(shù)規(guī)范
- 《電力系統(tǒng)自動(dòng)化運(yùn)維綜合實(shí)》課件-2M 同軸電纜制作
- 消防維保服務(wù)方案及實(shí)施細(xì)則
- 保衛(wèi)管理員培訓(xùn)課件
- 售前工程師工作總結(jié)
- 《智能物聯(lián)網(wǎng)導(dǎo)論》AIoT導(dǎo)論-第3章課件
- 香港朗文4B單詞及句子
評(píng)論
0/150
提交評(píng)論