版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年福建省泉州市永春一中學中考押題數(shù)學預測卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.對于一組統(tǒng)計數(shù)據(jù)1,1,6,5,1.下列說法錯誤的是()A.眾數(shù)是1 B.平均數(shù)是4 C.方差是1.6 D.中位數(shù)是62.某籃球運動員在連續(xù)7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分3.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.54.二次函數(shù)y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.5.如圖,I是?ABC的內(nèi)心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是()A.線段DB繞點D順時針旋轉一定能與線段DC重合B.線段DB繞點D順時針旋轉一定能與線段DI熏合C.∠CAD繞點A順時針旋轉一定能與∠DAB重合D.線段ID繞點I順時針旋轉一定能與線段IB重合6.下列計算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣67.如圖,矩形ABCD內(nèi)接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.8.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x>0 B.x≥0 C.x≠0 D.任意實數(shù)9.如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點,則以DE為直徑的圓與BC的位置關系是()A.相切 B.相交 C.相離 D.無法確定10.去年二月份,某房地產(chǎn)商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達后,立即降價30%.設降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.某航班每次飛行約有111名乘客,若飛機失事的概率為p=1.11115,一家保險公司要為乘客保險,許諾飛機一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險公司應向每位乘客至少收取_____元保險費才能保證不虧本.12.一個多項式與的積為,那么這個多項式為.13.已知,且,則的值為__________.14.如圖,在菱形紙片中,,,將菱形紙片翻折,使點落在的中點處,折痕為,點,分別在邊,上,則的值為________.15.按照一定規(guī)律排列依次為,…..按此規(guī)律,這列數(shù)中的第100個數(shù)是_____.16.如圖,以點O為圓心的兩個圓中,大圓的弦AB切小圓于點C,OA交小圓于點D,若OD=2,tan∠OAB=,則AB的長是________.三、解答題(共8題,共72分)17.(8分)某公司對用戶滿意度進行問卷調(diào)查,將連續(xù)6天內(nèi)每天收回的問卷數(shù)進行統(tǒng)計,繪制成如圖所示的統(tǒng)計圖.已知從左到右各矩形的高度比為2:3:4:6:4:1.第3天的頻數(shù)是2.請你回答:(1)收回問卷最多的一天共收到問卷_________份;(2)本次活動共收回問卷共_________份;(3)市場部對收回的問卷統(tǒng)一進行了編號,通過電腦程序隨機抽選一個編號,抽到問卷是第4天收回的概率是多少?(4)按照(3)中的模式隨機抽選若干編號,確定幸運用戶發(fā)放紀念獎,第4天和第6天分別有10份和2份獲獎,那么你認為這兩組中哪個組獲獎率較高?為什么?18.(8分)在平面直角坐標系xOy中,若拋物線頂點A的橫坐標是,且與y軸交于點,點P為拋物線上一點.求拋物線的表達式;若將拋物線向下平移4個單位,點P平移后的對應點為如果,求點Q的坐標.19.(8分)已知關于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實數(shù)根x1,x1.求實數(shù)k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實數(shù)k的值.20.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當點E在邊BC上時,求證DE=EB;如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關系,并加以證明;如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.21.(8分)如圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點B′順時針旋轉90°,畫出旋轉后得到的△A″B′C″,并求邊A′B′在旋轉過程中掃過的圖形面積.22.(10分)2018年“清明節(jié)”前夕,宜賓某花店用1000元購進若干菊花,很快售完,接著又用2500元購進第二批花,已知第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,且每朵花的進價比第一批的進價多元.(1)第一批花每束的進價是多少元.(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500元(不考慮其他因素),第二批每朵菊花的售價至少是多少元?23.(12分)解分式方程:-1=24.如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)中位數(shù)、眾數(shù)、方差等的概念計算即可得解.【詳解】A、這組數(shù)據(jù)中1都出現(xiàn)了1次,出現(xiàn)的次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,此選項正確;B、由平均數(shù)公式求得這組數(shù)據(jù)的平均數(shù)為4,故此選項正確;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此選項正確;D、將這組數(shù)據(jù)按從大到校的順序排列,第1個數(shù)是1,故中位數(shù)為1,故此選項錯誤;故選D.考點:1.眾數(shù);2.平均數(shù);1.方差;4.中位數(shù).2、D【解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).3、D【解析】
解:,①+②得:3(x+y)=15,則x+y=5,故選D4、D【解析】
由m≤x≤n和mn<0知m<0,n>0,據(jù)此得最小值為1m為負數(shù),最大值為1n為正數(shù).將最大值為1n分兩種情況,①頂點縱坐標取到最大值,結合圖象最小值只能由x=m時求出.②頂點縱坐標取不到最大值,結合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數(shù)y=﹣(x﹣1)1+5的大致圖象如下:.①當m≤0≤x≤n<1時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當m≤0≤x≤1≤n時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此種情形不合題意,所以m+n=﹣1+=.5、D【解析】解:∵I是△ABC的內(nèi)心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點睛:本題考查了三角形的內(nèi)切圓和內(nèi)心的,以及等腰三角形的判定與性質(zhì),同弧所對的圓周角相等.6、C【解析】
分別根據(jù)二次根式的定義,乘方的意義,負指數(shù)冪的意義以及絕對值的定義解答即可.【詳解】=3,故選項A不合題意;﹣32=﹣9,故選項B不合題意;(﹣3)﹣2=,故選項C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項D不合題意.故選C.【點睛】本題主要考查了二次根式的定義,乘方的定義、負指數(shù)冪的意義以及絕對值的定義,熟記定義是解答本題的關鍵.7、A【解析】
連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點睛】本題考查了圓周角定理與勾股定理,解題的關鍵是熟練的掌握圓周角定理與勾股定理的應用.8、C【解析】
根據(jù)分式和二次根式有意義的條件進行解答.【詳解】解:依題意得:x2≥1且x≠1.解得x≠1.故選C.【點睛】考查了分式有意義的條件和二次根式有意義的條件.解題時,注意分母不等于零且被開方數(shù)是非負數(shù).9、B【解析】
首先過點A作AM⊥BC,根據(jù)三角形面積求出AM的長,得出直線BC與DE的距離,進而得出直線與圓的位置關系.【詳解】解:過點A作AM⊥BC于點M,交DE于點N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分別是AC、AB的中點,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE為直徑的圓半徑為1.25,∴r=1.25>1.2,∴以DE為直徑的圓與BC的位置關系是:相交.故選B.【點睛】本題考查了直線和圓的位置關系,利用中位線定理得出BC到圓心的距離與半徑的大小關系是解題的關鍵.10、D【解析】
根據(jù)題意可以用相應的代數(shù)式表示出去年二月份之前房價,本題得以解決.【詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點睛】本題考查了列代數(shù)式,解答本題的關鍵是明確題意,列出相應的代數(shù)式.二、填空題(本大題共6個小題,每小題3分,共18分)11、21【解析】每次約有111名乘客,如飛機一旦失事,每位乘客賠償41萬人民幣,共計4111萬元,由題意可得一次飛行中飛機失事的概率為P=1.11115,所以賠償?shù)腻X數(shù)為41111111×1.11115=2111元,即可得至少應該收取保險費每人=21元.12、【解析】試題分析:依題意知=考點:整式運算點評:本題難度較低,主要考查學生對整式運算中多項式計算知識點的掌握。同底數(shù)冪相乘除,指數(shù)相加減。13、1【解析】分析:直接利用已知比例式假設出a,b,c的值,進而利用a+b-2c=6,得出答案.詳解:∵,∴設a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案為1.點睛:此題主要考查了比例的性質(zhì),正確表示出各數(shù)是解題關鍵.14、【解析】
過點作,交延長線于,連接,交于,根據(jù)折疊的性質(zhì)可得,,根據(jù)同角的余角相等可得,可得,由平行線的性質(zhì)可得,根據(jù)的三角函數(shù)值可求出、的長,根據(jù)為中點即可求出的長,根據(jù)余弦的定義的值即可得答案.【詳解】過點作,交延長線于,連接,交于,∵四邊形是菱形,∴,∵將菱形紙片翻折,使點落在的中點處,折痕為,∴,,∵,,∴,∴,∵,∴,∴,∵,,∴,∴,,∵為中點,∴,∴,∴,∴.故答案為【點睛】本題考查了折疊的性質(zhì)、菱形的性質(zhì)及三角函數(shù)的定義,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,熟練掌握三角函數(shù)的定義并熟記特殊角的三角函數(shù)值是解題關鍵.15、【解析】
根據(jù)按一定規(guī)律排列的一列數(shù)依次為…,可得第n個數(shù)為,據(jù)此可得第100個數(shù).【詳解】由題意,數(shù)列可改寫成,…,則后一個數(shù)的分子比前一個數(shù)的法則大2,后一個數(shù)的分母比前一個數(shù)的分母大3,∴第n個數(shù)為=,∴這列數(shù)中的第100個數(shù)為=;故答案為:.【點睛】本題考查數(shù)字類規(guī)律,解題的關鍵是讀懂題意,掌握數(shù)字類規(guī)律基本解題方法.16、8【解析】
如圖,連接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解決問題.【詳解】解:如圖,連接OC.∵AB是⊙O切線,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=,∴,∴AC=4,∴AB=2AC=8,故答案為8【點睛】本題考查切線的性質(zhì)、垂徑定理、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形,屬于中考??碱}型.三、解答題(共8題,共72分)17、1860分【解析】分析:(1)觀察圖形可知,第4天收到問卷最多,用矩形的高度比=頻數(shù)之比即可得出結論;(2)由于組距相同,各矩形的高度比即為頻數(shù)的比,可由數(shù)據(jù)總數(shù)=某組的頻數(shù)÷頻率計算;(3)根據(jù)概率公式計算即可;(4)分別計算第4天,第6天的獲獎率后比較即可.詳解:(1)由圖可知:第4天收到問卷最多,設份數(shù)為x,則:4:6=2:x,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)抽到第4天回收問卷的概率是;(4)第4天收回問卷獲獎率,第6天收回問卷獲獎率.∵,∴第6天收回問卷獲獎率高.點睛:本題考查了對頻數(shù)分布直方圖的掌握情況,根據(jù)圖中信息,求出頻率,用來估計概率.用到的知識點為:總體數(shù)目=部分數(shù)目÷相應頻率.部分的具體數(shù)目=總體數(shù)目×相應頻率.概率=所求情況數(shù)與總情況數(shù)之比.18、為;點Q的坐標為或.【解析】
依據(jù)拋物線的對稱軸方程可求得b的值,然后將點B的坐標代入線可求得c的值,即可求得拋物線的表達式;由平移后拋物線的頂點在x軸上可求得平移的方向和距離,故此,然后由點,軸可得到點Q和P關于x對稱,可求得點Q的縱坐標,將點Q的縱坐標代入平移后的解析式可求得對應的x的值,則可得到點Q的坐標.【詳解】拋物線頂點A的橫坐標是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個單位.平移后拋物線的解析式為,.,點O在PQ的垂直平分線上.又軸,點Q與點P關于x軸對稱.點Q的縱坐標為.將代入得:,解得:或.點Q的坐標為或.【點睛】本題主要考查的是二次函數(shù)的綜合應用,解答本題主要應用了待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的平移規(guī)律、線段垂直平分線的性質(zhì),發(fā)現(xiàn)點Q與點P關于x軸對稱,從而得到點Q的縱坐標是解題的關鍵.19、(2)k≤;(2)-2.【解析】試題分析:(2)根據(jù)方程的系數(shù)結合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實數(shù)k的取值范圍;(2)由根與系數(shù)的關系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實數(shù)k的取值范圍為k≤.(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實數(shù)k的值為﹣2.考點:一元二次方程根與系數(shù)的關系,根的判別式.20、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】
(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.21、(1)作圖見解析;(2)作圖見解析;5π(平方單位).【解析】
(1)連接AO、BO、CO并延長到2AO、2BO、2CO長度找到各點的對應點,順次連接即可.(2)△A′B′C′的A′、C′繞點B′順時針旋轉90°得到對應點,順次連接即可.A′B′在旋轉過程中掃過的圖形面積是一個扇形,根據(jù)扇形的面積公式計算即可.【詳解】解:(1)見圖中△A′B′C′
(2)見圖中△A″B′C″
扇形的面積(平方單位).【點睛】本題主要考查了位似圖形及旋轉變換作圖的方法及扇形的面積公式.22、(1)2元;(2)第二批花的售價至少為元;【解析】
(1)設第一批花每束的進價是x元,則第二批花每束的進價是(x+0.5)元,根據(jù)數(shù)量=總價÷單價結合第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)由第二批花的進價比第一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度出租車大包業(yè)務合作協(xié)議書4篇
- 2024物聯(lián)網(wǎng)技術研發(fā)與授權合同
- 二零二五年度綠色建筑項目承包合同節(jié)能環(huán)保與綠色認證4篇
- 《休閑養(yǎng)生地產(chǎn)專題》課件
- 2025至2030年中國異地數(shù)據(jù)傳輸解決方案數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國太陽傘座數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年專用水泥項目投資價值分析報告
- 2025年中國隔板固定件市場調(diào)查研究報告
- 2025年中國滌棉服裝面料市場調(diào)查研究報告
- 2025年中國乙炔回火防止器市場調(diào)查研究報告
- 2024電子商務平臺用戶隱私保護協(xié)議3篇
- 安徽省蕪湖市2023-2024學年高一上學期期末考試 英語 含答案
- 電力工程施工安全風險評估與防控
- 醫(yī)學教程 常見體表腫瘤與腫塊課件
- 內(nèi)分泌系統(tǒng)異常與虛勞病關系
- 智聯(lián)招聘在線測評題
- DB3418T 008-2019 宣紙潤墨性感官評判方法
- 【魔鏡洞察】2024藥食同源保健品滋補品行業(yè)分析報告
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗人員理論考試題及答案
- 鋼筋桁架樓承板施工方案
- 2024年駐村第一書記工作總結干貨3篇
評論
0/150
提交評論