基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)研究以“弧度制”和“任意角的三角函數(shù)”為例_第1頁
基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)研究以“弧度制”和“任意角的三角函數(shù)”為例_第2頁
基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)研究以“弧度制”和“任意角的三角函數(shù)”為例_第3頁
基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)研究以“弧度制”和“任意角的三角函數(shù)”為例_第4頁
基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)研究以“弧度制”和“任意角的三角函數(shù)”為例_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)研究以“弧度制”和“任意角的三角函數(shù)”為例一、本文概述Overviewofthisarticle三角函數(shù)是高中數(shù)學(xué)課程中的重要內(nèi)容,其歷史悠久,內(nèi)涵豐富,應(yīng)用廣泛。本文旨在探討基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)研究,特別以“弧度制”和“任意角的三角函數(shù)”為例。我們將從數(shù)學(xué)史的視角,追溯三角函數(shù)的發(fā)展歷程,揭示其背后的數(shù)學(xué)思想和方法,以期為高中三角函數(shù)的教學(xué)提供新的啟示和參考。Trigonometricfunctionsareanimportantpartofhighschoolmathematicscurriculum,withalonghistory,richconnotations,andwideapplications.Thisarticleaimstoexploretheteachingandresearchofhighschooltrigonometricfunctionsbasedonthehistoryofmathematics,especiallywiththeexamplesof"radiansystem"and"trigonometricfunctionsofanyangle".Wewilltracethedevelopmentprocessoftrigonometricfunctionsfromtheperspectiveofmathematicalhistory,revealthemathematicalideasandmethodsbehindthem,andprovidenewinsightsandreferencesfortheteachingoftrigonometricfunctionsinhighschool.我們將回顧三角函數(shù)的歷史演變,從古希臘的數(shù)學(xué)家開始,到文藝復(fù)興時(shí)期的三角學(xué)書籍,再到現(xiàn)代數(shù)學(xué)中的三角函數(shù)定義和應(yīng)用。這一部分的探討將幫助我們理解三角函數(shù)在數(shù)學(xué)發(fā)展中的重要地位,以及它在解決實(shí)際問題中的價(jià)值。Wewillreviewthehistoricalevolutionoftrigonometricfunctions,startingfrommathematiciansinancientGreece,tobooksontrigonometryduringtheRenaissance,andthentothedefinitionandapplicationoftrigonometricfunctionsinmodernmathematics.Thissectionofthediscussionwillhelpusunderstandtheimportantpositionoftrigonometricfunctionsinthedevelopmentofmathematics,aswellastheirvalueinsolvingpracticalproblems.我們將深入探討“弧度制”的歷史背景和教學(xué)價(jià)值?;《戎剖侨呛瘮?shù)表示方法的一種,與角度制相比,它具有更多的數(shù)學(xué)優(yōu)勢(shì)和應(yīng)用場(chǎng)景。我們將通過分析弧度制的起源和發(fā)展,探討其在高中三角函數(shù)教學(xué)中的引入方式和教學(xué)策略。Wewilldelveintothehistoricalbackgroundandteachingvalueofthe"radiansystem".Theradiansystemisamethodofrepresentingtrigonometricfunctions,whichhasmoremathematicaladvantagesandapplicationscenarioscomparedtotheanglesystem.Wewillexploretheintroductionmethodsandteachingstrategiesoftheradiansysteminhighschooltrigonometricfunctionteachingbyanalyzingitsoriginanddevelopment.再次,我們將關(guān)注“任意角的三角函數(shù)”這一概念的演變和教學(xué)應(yīng)用。任意角的三角函數(shù)突破了傳統(tǒng)三角函數(shù)定義中的角度限制,使得三角函數(shù)的研究范圍得到了極大的拓展。我們將通過分析任意角三角函數(shù)的歷史發(fā)展和現(xiàn)代定義,探討其在高中三角函數(shù)教學(xué)中的實(shí)施方法和教學(xué)意義。Onceagain,wewillfocusontheevolutionandteachingapplicationoftheconceptof"trigonometricfunctionsatanyangle".Thetrigonometricfunctionofanyanglebreaksthroughtheanglelimitationsintraditionaltrigonometricfunctiondefinitions,greatlyexpandingtheresearchscopeoftrigonometricfunctions.Wewillexploretheimplementationmethodsandteachingsignificanceofarbitraryangletrigonometricfunctionsinhighschooltrigonometricfunctionteachingbyanalyzingtheirhistoricaldevelopmentandmoderndefinition.我們將總結(jié)基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)研究的重要性和意義。通過深入研究數(shù)學(xué)史,我們可以更好地理解三角函數(shù)的本質(zhì)和內(nèi)涵,揭示其背后的數(shù)學(xué)思想和方法,從而在高中三角函數(shù)教學(xué)中更好地引導(dǎo)學(xué)生理解、掌握和應(yīng)用三角函數(shù)知識(shí)。我們也希望通過本文的探討,能夠激發(fā)更多教育工作者對(duì)數(shù)學(xué)史的興趣和重視,促進(jìn)數(shù)學(xué)教育與數(shù)學(xué)史的結(jié)合,提高數(shù)學(xué)教學(xué)的質(zhì)量和效果。Wewillsummarizetheimportanceandsignificanceofhighschooltrigonometricfunctionteachingresearchbasedonmathematicalhistory.Bydelvingintothehistoryofmathematics,wecanbetterunderstandtheessenceandconnotationoftrigonometricfunctions,revealthemathematicalideasandmethodsbehindthem,andbetterguidestudentstounderstand,master,andapplytrigonometricfunctionknowledgeinhighschooltrigonometricfunctionteaching.Wealsohopethatthroughthediscussioninthisarticle,moreeducatorscanbeinspiredtobeinterestedandattachimportancetothehistoryofmathematics,promotetheintegrationofmathematicseducationandmathematicshistory,andimprovethequalityandeffectivenessofmathematicsteaching.二、數(shù)學(xué)史視角下的“弧度制”教學(xué)研究Researchon"RadianSystem"TeachingfromthePerspectiveofMathematicalHistory在三角函數(shù)的發(fā)展歷程中,“弧度制”的出現(xiàn)與發(fā)展是一個(gè)重要的里程碑。對(duì)于高中學(xué)生而言,理解弧度制的概念及其與角度制的區(qū)別,對(duì)于掌握三角函數(shù)的深層含義具有關(guān)鍵性的意義。因此,基于數(shù)學(xué)史的視角進(jìn)行“弧度制”的教學(xué)研究,對(duì)于提高高中三角函數(shù)的教學(xué)效果具有重要的價(jià)值。Theemergenceanddevelopmentofthe"radiansystem"isanimportantmilestoneinthedevelopmentoftrigonometricfunctions.Forhighschoolstudents,understandingtheconceptoftheradiansystemanditsdifferencefromtheanglesystemiscrucialformasteringthedeepmeaningoftrigonometricfunctions.Therefore,conductingteachingresearchonthe"radiansystem"fromtheperspectiveofmathematicalhistoryisofgreatvalueinimprovingtheteachingeffectivenessofhighschooltrigonometricfunctions.從歷史的角度來看,弧度制的起源可以追溯到古希臘時(shí)期的數(shù)學(xué)家希帕克斯。他為了解決天文學(xué)中的一些問題,首次提出了用弧長(zhǎng)來度量角的概念。這一概念的提出,使得三角函數(shù)的研究從角度制轉(zhuǎn)向了弧度制,為后來的三角學(xué)研究開辟了新的道路。因此,在教學(xué)中,我們可以向?qū)W生介紹弧度制的起源背景,讓學(xué)生理解弧度制提出的必要性和重要性。Fromahistoricalperspective,theoriginofthearcsystemcanbetracedbacktothemathematicianHipparchusofancientGreece.Hefirstproposedtheconceptofusingarclengthtomeasureanglesinordertosolvesomeproblemsinastronomy.Theintroductionofthisconceptledtoashiftinthestudyoftrigonometricfunctionsfromtheperspectivesystemtotheradiansystem,openingupanewpathforlatertrigonometricresearch.Therefore,inteaching,wecanintroducethebackgroundoftheoriginoftheradiansystemtostudents,sothattheycanunderstandthenecessityandimportanceofproposingtheradiansystem.弧度制與角度制相比,具有一些獨(dú)特的優(yōu)點(diǎn)。例如,在微積分中,弧度制下的三角函數(shù)導(dǎo)數(shù)更為簡(jiǎn)潔,這有助于學(xué)生在后續(xù)的學(xué)習(xí)中更好地理解和應(yīng)用三角函數(shù)?;《戎婆c圓的半徑有關(guān),這使得三角函數(shù)與圓的關(guān)系更為緊密,有助于學(xué)生對(duì)三角函數(shù)的理解。在教學(xué)中,我們應(yīng)著重強(qiáng)調(diào)這些優(yōu)點(diǎn),讓學(xué)生充分理解弧度制的價(jià)值。Comparedtotheanglesystem,theradiansystemhassomeuniqueadvantages.Forexample,incalculus,thederivativeoftrigonometricfunctionsinradiansismoreconcise,whichhelpsstudentsbetterunderstandandapplytrigonometricfunctionsinsubsequentlearning.Theradiansystemisrelatedtotheradiusofacircle,whichmakestherelationshipbetweentrigonometricfunctionsandcirclescloserandhelpsstudentsunderstandtrigonometricfunctions.Inteaching,weshouldemphasizetheseadvantagesandenablestudentstofullyunderstandthevalueofthecurvaturesystem.為了幫助學(xué)生更好地掌握弧度制,我們可以在教學(xué)中設(shè)計(jì)一些具有針對(duì)性的教學(xué)活動(dòng)。例如,我們可以引導(dǎo)學(xué)生通過比較角度制和弧度制下的三角函數(shù)值,來感受弧度制的優(yōu)點(diǎn)和便利性。我們還可以讓學(xué)生通過實(shí)際操作,如使用計(jì)算器或編程軟件來計(jì)算弧度制下的三角函數(shù)值,從而加深對(duì)弧度制的理解和應(yīng)用。Inordertohelpstudentsbettermasterthecurvaturesystem,wecandesignsometargetedteachingactivitiesinteaching.Forexample,wecanguidestudentstoexperiencetheadvantagesandconvenienceofthecurvaturesystembycomparingthetrigonometricfunctionvaluesundertheanglesystemandthecurvaturesystem.Wecanalsoallowstudentstousepracticaloperations,suchasusingcalculatorsorprogrammingsoftware,tocalculatethetrigonometricfunctionvaluesundertheradiansystem,therebydeepeningtheirunderstandingandapplicationoftheradiansystem.基于數(shù)學(xué)史視角下的“弧度制”教學(xué)研究,不僅有助于學(xué)生理解弧度制的概念和歷史背景,還能幫助學(xué)生更好地掌握和應(yīng)用三角函數(shù)。因此,在未來的高中三角函數(shù)教學(xué)中,我們應(yīng)充分重視數(shù)學(xué)史的作用,將其融入教學(xué)中,以提高教學(xué)效果和學(xué)生的學(xué)習(xí)效果。Basedontheperspectiveofmathematicalhistory,teachingresearchonthe"curvaturesystem"notonlyhelpsstudentsunderstandtheconceptandhistoricalbackgroundofthecurvaturesystem,butalsohelpsstudentsbettergraspandapplytrigonometricfunctions.Therefore,infuturehighschooltrigonometricfunctionteaching,weshouldfullyvaluetheroleofmathematicalhistoryandintegrateitintoteachingtoimproveteachingeffectivenessandstudentlearningoutcomes.三、數(shù)學(xué)史視角下的“任意角的三角函數(shù)”教學(xué)研究TeachingResearchon"TrigonometricFunctionsofArbitraryAngles"fromthePerspectiveofMathematicalHistory三角函數(shù)是高中數(shù)學(xué)的重要組成部分,其中“任意角的三角函數(shù)”更是其核心概念之一。在傳統(tǒng)的教學(xué)方式中,我們往往側(cè)重于公式的推導(dǎo)和應(yīng)用,而忽視了其背后的歷史背景和數(shù)學(xué)史的意義。數(shù)學(xué)史不僅能幫助我們理解三角函數(shù)的發(fā)展歷程,更能幫助學(xué)生深入理解三角函數(shù)的概念和本質(zhì)。Trigonometricfunctionsareanimportantcomponentofhighschoolmathematics,with"trigonometricfunctionsofanyangle"beingoneofitscoreconcepts.Intraditionalteachingmethods,weoftenfocusonthederivationandapplicationofformulas,whileignoringthehistoricalbackgroundandsignificanceofmathematicalhistorybehindthem.Thehistoryofmathematicscannotonlyhelpusunderstandthedevelopmentprocessoftrigonometricfunctions,butalsohelpstudentsdeepentheirunderstandingoftheconceptandessenceoftrigonometricfunctions.“任意角的三角函數(shù)”的概念起源于17世紀(jì)的歐洲。當(dāng)時(shí),數(shù)學(xué)家們開始擺脫傳統(tǒng)的限制,嘗試將三角函數(shù)從直角三角形的束縛中解放出來,使其能夠應(yīng)用到更廣泛的領(lǐng)域。這一轉(zhuǎn)變的背后,蘊(yùn)含著數(shù)學(xué)家們對(duì)無窮小和無窮大的深入思考,以及對(duì)周期性現(xiàn)象的獨(dú)特理解。Theconceptoftrigonometricfunctionsatanyangleoriginatedin17thcenturyEurope.Atthattime,mathematiciansbegantobreakfreefromtraditionallimitationsandattemptedtofreetrigonometricfunctionsfromtheconstraintsofrightangledtriangles,enablingthemtobeappliedtoawiderrangeoffields.Behindthistransformationliesthedeepthinkingofmathematiciansoninfinitesimalsandinfinities,aswellastheiruniqueunderstandingofperiodicphenomena.在教學(xué)中,我們可以通過引入數(shù)學(xué)史,讓學(xué)生理解“任意角的三角函數(shù)”概念的演變過程。例如,可以講述歐拉如何將復(fù)數(shù)與三角函數(shù)相結(jié)合,形成歐拉公式,從而實(shí)現(xiàn)了三角函數(shù)從直角三角形到任意角的飛躍。這樣的歷史背景,不僅有助于學(xué)生對(duì)三角函數(shù)的深入理解,更能激發(fā)他們的學(xué)習(xí)興趣和探索精神。Inteaching,wecanintroducethehistoryofmathematicstohelpstudentsunderstandtheevolutionprocessoftheconceptoftrigonometricfunctionsatanyangle.Forexample,itcanbedescribedhowEulercombinedcomplexnumberswithtrigonometricfunctionstoformtheEulerformula,therebyachievingaleapintrigonometricfunctionsfromrighttrianglestoanyangle.Thishistoricalbackgroundnotonlyhelpsstudentsdeepentheirunderstandingoftrigonometricfunctions,butalsostimulatestheirinterestinlearningandexploratoryspirit.數(shù)學(xué)史還可以幫助我們更好地理解三角函數(shù)在實(shí)際應(yīng)用中的價(jià)值。例如,在物理學(xué)、工程學(xué)等領(lǐng)域,三角函數(shù)都有著廣泛的應(yīng)用。通過引入數(shù)學(xué)史,我們可以讓學(xué)生了解到這些應(yīng)用背后的數(shù)學(xué)原理,以及數(shù)學(xué)家們是如何通過不斷的探索和創(chuàng)新,將三角函數(shù)應(yīng)用到這些領(lǐng)域的。Mathematicalhistorycanalsohelpusbetterunderstandthevalueoftrigonometricfunctionsinpracticalapplications.Forexample,infieldssuchasphysicsandengineering,trigonometricfunctionshaveawiderangeofapplications.Byintroducingthehistoryofmathematics,wecanenablestudentstounderstandthemathematicalprinciplesbehindtheseapplications,aswellashowmathematicianshaveappliedtrigonometricfunctionstothesefieldsthroughcontinuousexplorationandinnovation.因此,在數(shù)學(xué)史視角下進(jìn)行“任意角的三角函數(shù)”的教學(xué)研究,不僅可以幫助學(xué)生深入理解三角函數(shù)的概念和本質(zhì),更能激發(fā)他們的學(xué)習(xí)興趣和探索精神。也能讓他們更好地理解數(shù)學(xué)在實(shí)際應(yīng)用中的價(jià)值,從而培養(yǎng)他們的數(shù)學(xué)素養(yǎng)和解決問題的能力。Therefore,conductingteachingandresearchon"trigonometricfunctionsatanyangle"fromtheperspectiveofmathematicalhistorycannotonlyhelpstudentsdeeplyunderstandtheconceptandessenceoftrigonometricfunctions,butalsostimulatetheirlearninginterestandexplorationspirit.Itcanalsohelpthembetterunderstandthevalueofmathematicsinpracticalapplications,therebycultivatingtheirmathematicalliteracyandproblem-solvingabilities.四、教學(xué)案例與效果分析TeachingCasesandEffectAnalysis為了具體展示基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)方法的實(shí)際效果,本研究以“弧度制”和“任意角的三角函數(shù)”為例,設(shè)計(jì)了兩個(gè)教學(xué)案例,并在實(shí)際課堂中進(jìn)行了應(yīng)用。Inordertodemonstratethepracticaleffectivenessofhighschooltrigonometricfunctionteachingmethodsbasedonmathematicalhistory,thisstudytakes"radiansystem"and"trigonometricfunctionsofanyangle"asexamples,designstwoteachingcases,andappliestheminactualclassrooms.在這個(gè)案例中,我們首先回顧了弧度制的歷史背景,介紹了由歐拉提出的弧度制概念及其在數(shù)學(xué)和物理中的應(yīng)用。接著,我們引導(dǎo)學(xué)生通過對(duì)比角度制和弧度制,理解弧度制的優(yōu)點(diǎn)和必要性。在此基礎(chǔ)上,我們?cè)敿?xì)講解了弧度與角度的轉(zhuǎn)換方法,以及弧度制下的三角函數(shù)定義。通過一系列練習(xí)題,幫助學(xué)生鞏固所學(xué)知識(shí),提高應(yīng)用能力。Inthiscase,wefirstreviewedthehistoricalbackgroundoftheradiansystemandintroducedtheconceptofradiansystemproposedbyEuleranditsapplicationsinmathematicsandphysics.Next,weguidestudentstounderstandtheadvantagesandnecessityofthecurvaturesystembycomparingtheanglesystemandthecurvaturesystem.Onthisbasis,weprovidedadetailedexplanationoftheconversionmethodbetweenradiansandangles,aswellasthedefinitionoftrigonometricfunctionsundertheradiansystem.Throughaseriesofpracticequestions,helpstudentsconsolidatetheirknowledgeandimprovetheirapplicationabilities.效果分析:通過這種教學(xué)方法,學(xué)生對(duì)弧度制的理解更加深入,能夠熟練掌握弧度與角度的轉(zhuǎn)換技巧,以及在弧度制下計(jì)算三角函數(shù)值的方法。同時(shí),學(xué)生對(duì)數(shù)學(xué)史的興趣也得到了激發(fā),增強(qiáng)了學(xué)習(xí)動(dòng)力。Effectanalysis:Throughthisteachingmethod,studentshaveadeeperunderstandingoftheradiansystem,andcanproficientlymastertheconversionskillsbetweenradiansandangles,aswellasthemethodofcalculatingtrigonometricfunctionvaluesundertheradiansystem.Atthesametime,students'interestinthehistoryofmathematicshasalsobeenstimulated,enhancingtheirlearningmotivation.在這個(gè)案例中,我們首先回顧了三角函數(shù)的歷史發(fā)展,介紹了三角函數(shù)從直角三角形擴(kuò)展到任意角的過程。然后,我們引導(dǎo)學(xué)生理解任意角的三角函數(shù)定義,掌握其性質(zhì)和應(yīng)用。為了加深學(xué)生的理解,我們還設(shè)計(jì)了一些實(shí)際問題,讓學(xué)生運(yùn)用所學(xué)知識(shí)進(jìn)行解決。Inthiscase,wefirstreviewedthehistoricaldevelopmentoftrigonometricfunctionsandintroducedtheprocessofexpandingtrigonometricfunctionsfromrighttrianglestoanyangle.Then,weguidestudentstounderstandthedefinitionoftrigonometricfunctionsatanyangle,mastertheirpropertiesandapplications.Inordertodeepenstudents'understanding,wealsodesignedsomepracticalproblemsforthemtoapplytheknowledgetheyhavelearnedtosolve.效果分析:通過這種方法教學(xué),學(xué)生對(duì)任意角的三角函數(shù)有了更清晰的認(rèn)識(shí),能夠靈活運(yùn)用三角函數(shù)解決實(shí)際問題。學(xué)生對(duì)數(shù)學(xué)史的了解也加深了對(duì)三角函數(shù)概念的理解,提高了學(xué)習(xí)效果。Effectanalysis:Throughthismethodofteaching,studentshaveaclearerunderstandingoftrigonometricfunctionsatanyangleandcanflexiblyusetrigonometricfunctionstosolvepracticalproblems.Students'understandingofmathematicalhistoryhasalsodeepenedtheirunderstandingoftheconceptoftrigonometricfunctions,improvingtheirlearningoutcomes.基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)研究在實(shí)際應(yīng)用中取得了良好的效果。通過引入數(shù)學(xué)史知識(shí),不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,還提高了他們的學(xué)習(xí)效果。因此,在未來的三角函數(shù)教學(xué)中,我們應(yīng)該更加注重?cái)?shù)學(xué)史的應(yīng)用,讓歷史與現(xiàn)實(shí)相結(jié)合,為學(xué)生的學(xué)習(xí)提供更好的支持。Theteachingresearchofhighschooltrigonometricfunctionsbasedonmathematicalhistoryhasachievedgoodresultsinpracticalapplications.Byintroducingknowledgeofmathematicalhistory,notonlyhasitstimulatedstudents'interestinlearning,butithasalsoimprovedtheirlearningoutcomes.Therefore,infutureteachingoftrigonometricfunctions,weshouldpaymoreattentiontotheapplicationofmathematicalhistory,combinehistorywithreality,andprovidebettersupportforstudents'learning.五、結(jié)論與展望ConclusionandOutlook本研究以“弧度制”和“任意角的三角函數(shù)”為例,深入探討了基于數(shù)學(xué)史的高中三角函數(shù)教學(xué)。通過理論與實(shí)踐的結(jié)合,我們得出以下Thisstudytakes"radiansystem"and"trigonometricfunctionsofanyangle"asexamplestoexploreindepththeteachingoftrigonometricfunctionsinhighschoolbasedonmathematicalhistory.Throughthecombinationoftheoryandpractice,wehavecometothefollowingconclusions:將數(shù)學(xué)史融入高中三角函數(shù)教學(xué),能夠幫助學(xué)生更深入地理解三角函數(shù)的概念和性質(zhì)。通過了解弧度制和任意角三角函數(shù)的歷史背景和發(fā)展過程,學(xué)生能夠更好地理解這些概念的來龍去脈,從而加深對(duì)三角函數(shù)的理解。Integratingmathematicalhistoryintohighschooltrigonometricfunctionteachingcanhelpstudentsgainadeeperunderstandingoftheconceptsandpropertiesoftrigonometricfunctions.Byunderstandingthehistoricalbackgroundanddevelopmentprocessoftheradiansystemandarbitraryangletrigonometricfunctions,studentscanbetterunderstandthebackgroundoftheseconcepts,therebydeepeningtheirunderstandingoftrigonometricfunctions.數(shù)學(xué)史的教學(xué)能夠激發(fā)學(xué)生的學(xué)習(xí)興趣和動(dòng)力。通過講述歷史上的數(shù)學(xué)故事和人物,可以吸引學(xué)生的注意力,讓他們更加投入到三角函數(shù)的學(xué)習(xí)中。同時(shí),數(shù)學(xué)史的教學(xué)還能夠培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)和人文精神,讓他們更加全面地發(fā)展。Theteachingofmathematicalhistorycanstimulatestudents'interest

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論