2024屆湖北省武漢東湖高新區(qū)六校聯(lián)考中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第1頁
2024屆湖北省武漢東湖高新區(qū)六校聯(lián)考中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第2頁
2024屆湖北省武漢東湖高新區(qū)六校聯(lián)考中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第3頁
2024屆湖北省武漢東湖高新區(qū)六校聯(lián)考中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第4頁
2024屆湖北省武漢東湖高新區(qū)六校聯(lián)考中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆湖北省武漢東湖高新區(qū)六校聯(lián)考中考押題數(shù)學(xué)預(yù)測(cè)卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,在△ABC和△BDE中,點(diǎn)C在邊BD上,邊AC交邊BE于點(diǎn)F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF2.如圖,數(shù)軸上的A、B、C、D四點(diǎn)中,與數(shù)﹣表示的點(diǎn)最接近的是()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D3.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個(gè)正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.234.不等式4-2x>0的解集在數(shù)軸上表示為()A. B. C. D.5.如圖,由兩個(gè)相同的正方體和一個(gè)圓錐體組成一個(gè)立體圖形,其俯視圖是A. B. C. D.6.如圖所示圖形中,不是正方體的展開圖的是()A. B.C. D.7.下列說法正確的是()A.一個(gè)游戲的中獎(jiǎng)概率是110B.為了解全國中學(xué)生的心理健康情況,應(yīng)該采用普查的方式C.一組數(shù)據(jù)8,8,7,10,6,8,9的眾數(shù)和中位數(shù)都是8D.若甲組數(shù)據(jù)的方差S="0.01",乙組數(shù)據(jù)的方差s=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定8.在對(duì)某社會(huì)機(jī)構(gòu)的調(diào)查中收集到以下數(shù)據(jù),你認(rèn)為最能夠反映該機(jī)構(gòu)年齡特征的統(tǒng)計(jì)量是()年齡13141525283035其他人數(shù)30533171220923A.平均數(shù) B.眾數(shù) C.方差 D.標(biāo)準(zhǔn)差9.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是()A.2 B. C. D.210.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1二、填空題(共7小題,每小題3分,滿分21分)11.將ΔABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)到ΔA'BC'使A、B、C'在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,則圖中陰影部分面積為________cm12.化簡:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.13.若關(guān)于x、y的二元一次方程組的解是,則關(guān)于a、b的二元一次方程組的解是_______.14.某種水果的售價(jià)為每千克a元,用面值為50元的人民幣購買了3千克這種水果,應(yīng)找回元(用含a的代數(shù)式表示).15.如圖,折疊長方形紙片ABCD,先折出對(duì)角線BD,再將AD折疊到BD上,得到折痕DE,點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)F,若AB=8,BC=6,則AE的長為_____.16.已知x=2是關(guān)于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個(gè)根,則k的值為_____.17.如圖,在平面直角坐標(biāo)系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動(dòng)點(diǎn),當(dāng)△ABM是等腰三角形時(shí),M點(diǎn)的坐標(biāo)為_____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在AB,CD邊上,BE=DF,連接CE,AF.求證:AF=CE.19.(5分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點(diǎn)E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大??;(2)若AP=6,求AE+AF的值.20.(8分)已知:如圖,△MNQ中,MQ≠NQ.(1)請(qǐng)你以MN為一邊,在MN的同側(cè)構(gòu)造一個(gè)與△MNQ全等的三角形,畫出圖形,并簡要說明構(gòu)造的方法;(2)參考(1)中構(gòu)造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.21.(10分)計(jì)算:2tan45°-(-)o-22.(10分)先化簡,再求值:,其中滿足.23.(12分)已知關(guān)于的方程有兩個(gè)實(shí)數(shù)根.求的取值范圍;若,求的值;24.(14分)如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(4,0),與y軸交于點(diǎn)C(0,2)(1)求拋物線的表達(dá)式;(2)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,點(diǎn)D與點(diǎn)C關(guān)于點(diǎn)M對(duì)稱,試問在該拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△BMP與△ABD相似?若存在,請(qǐng)求出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)全等三角形的判定與性質(zhì),可得∠ACB=∠DBE的關(guān)系,根據(jù)三角形外角的性質(zhì),可得答案.【詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C.【點(diǎn)睛】.本題主要考查全等三角形的判定與性質(zhì),熟悉掌握是關(guān)鍵.2、B【解析】

,計(jì)算-1.732與-3,-2,-1的差的絕對(duì)值,確定絕對(duì)值最小即可.【詳解】,,,,因?yàn)?.268<0.732<1.268,所以表示的點(diǎn)與點(diǎn)B最接近,故選B.3、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點(diǎn):1正多邊形和圓;2.弧長的計(jì)算.4、D【解析】

根據(jù)解一元一次不等式基本步驟:移項(xiàng)、系數(shù)化為1可得.【詳解】移項(xiàng),得:-2x>-4,

系數(shù)化為1,得:x<2,

故選D.【點(diǎn)睛】考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù)不等號(hào)方向要改變.5、D【解析】

由圓錐的俯視圖可快速得出答案.【詳解】找到從上面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在俯視圖中,從幾何體的上面看:可以得到兩個(gè)正方形,右邊的正方形里面有一個(gè)內(nèi)接圓.故選D.【點(diǎn)睛】本題考查立體圖形的三視圖,熟記基本立體圖的三視圖是解題的關(guān)鍵.6、C【解析】

由平面圖形的折疊及正方形的展開圖結(jié)合本題選項(xiàng),一一求證解題.【詳解】解:A、B、D都是正方體的展開圖,故選項(xiàng)錯(cuò)誤;C、帶“田”字格,由正方體的展開圖的特征可知,不是正方體的展開圖.故選C.【點(diǎn)睛】此題考查正方形的展開圖,難度不大,但是需要空間想象力才能更好的解題7、C【解析】

眾數(shù),中位數(shù),方差等概念分析即可.【詳解】A、中獎(jiǎng)是偶然現(xiàn)象,買再多也不一定中獎(jiǎng),故是錯(cuò)誤的;B、全國中學(xué)生人口多,只需抽樣調(diào)查就行了,故是錯(cuò)誤的;C、這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是8,故是正確的;D、方差越小越穩(wěn)定,甲組數(shù)據(jù)更穩(wěn)定,故是錯(cuò)誤.故選C.【點(diǎn)睛】考核知識(shí)點(diǎn):眾數(shù),中位數(shù),方差.8、B【解析】分析:根據(jù)平均數(shù)的意義,眾數(shù)的意義,方差的意義進(jìn)行選擇.詳解:由于14歲的人數(shù)是533人,影響該機(jī)構(gòu)年齡特征,因此,最能夠反映該機(jī)構(gòu)年齡特征的統(tǒng)計(jì)量是眾數(shù).故選B.點(diǎn)睛:本題主要考查統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對(duì)統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.9、C【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點(diǎn)M是OP的中點(diǎn),∴DM=OP=.故選C.考點(diǎn):角平分線的性質(zhì);含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.10、A【解析】

原式變形后,利用平方差公式計(jì)算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點(diǎn)睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、4π【解析】分析:易得整理后陰影部分面積為圓心角為110°,兩個(gè)半徑分別為4和1的圓環(huán)的面積.詳解:由旋轉(zhuǎn)可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,∴BC=1cm,AC=13cm,∠A′BA=110°,∠CBC′=110°,∴陰影部分面積=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=120π360×(41-11)=4πcm1故答案為4π.點(diǎn)睛:本題利用旋轉(zhuǎn)前后的圖形全等,直角三角形的性質(zhì),扇形的面積公式求解.12、(a+1)1.【解析】

原式提取公因式,計(jì)算即可得到結(jié)果.【詳解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],

=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],

=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],

=…,

=(a+1)1.

故答案是:(a+1)1.【點(diǎn)睛】考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關(guān)鍵.13、【解析】分析:利用關(guān)于x、y的二元一次方程組的解是可得m、n的數(shù)值,代入關(guān)于a、b的方程組即可求解,利用整體的思想找到兩個(gè)方程組的聯(lián)系再求解的方法更好.詳解:∵關(guān)于x、y的二元一次方程組的解是,∴將解代入方程組可得m=﹣1,n=2∴關(guān)于a、b的二元一次方程組整理為:解得:點(diǎn)睛:本題考查二元一次方程組的求解,重點(diǎn)是整體考慮的數(shù)學(xué)思想的理解運(yùn)用在此題體現(xiàn)明顯.14、(50-3a).【解析】試題解析:∵購買這種售價(jià)是每千克a元的水果3千克需3a元,∴根據(jù)題意,應(yīng)找回(50-3a)元.考點(diǎn):列代數(shù)式.15、3【解析】

先利用勾股定理求出BD,再求出DF、BF,設(shè)AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解決問題.【詳解】∵四邊形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.設(shè)AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案為:3.【點(diǎn)睛】本題考查了矩形的性質(zhì)、勾股定理等知識(shí),解題時(shí),我們常常設(shè)要求的線段長為x,然后根據(jù)折疊和軸對(duì)稱的性質(zhì)用含x的代數(shù)式表示其他線段的長度,選擇適當(dāng)?shù)闹苯侨切?,運(yùn)用勾股定理列出方程求出答案.16、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關(guān)于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因?yàn)閗≠0,所以k的值為﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.17、(4,6),(8﹣27,6),(27,6).【解析】

分別取三個(gè)點(diǎn)作為定點(diǎn),然后根據(jù)勾股定理和等腰三角形的兩個(gè)腰相等來判斷是否存在符合題意的M的坐標(biāo).【詳解】解:當(dāng)M為頂點(diǎn)時(shí),AB長為底=8,M在DC中點(diǎn)上,所以M的坐標(biāo)為(4,6),當(dāng)B為頂點(diǎn)時(shí),AB長為腰=8,M在靠近D處,根據(jù)勾股定理可知ME=82-所以M的坐標(biāo)為(8﹣27,6);當(dāng)A為頂點(diǎn)時(shí),AB長為腰=8,M在靠近C處,根據(jù)勾股定理可知MF=82-所以M的坐標(biāo)為(27,6);綜上所述,M的坐標(biāo)為(4,6),(8﹣27,6),(27,6);故答案為:(4,6),(8﹣27,6),(27,6).【點(diǎn)睛】本題主要考查矩形的性質(zhì)、坐標(biāo)與圖形性質(zhì),解題關(guān)鍵是根據(jù)對(duì)等腰三角形性質(zhì)的掌握和勾股定理的應(yīng)用.三、解答題(共7小題,滿分69分)18、證明見解析.【解析】試題分析:根據(jù)矩形的性質(zhì)得出求出根據(jù)平行四邊形的判定得出四邊形是平行四邊形,即可得出答案.試題解析:∵四邊形ABCD是矩形,∴∴∴四邊形是平行四邊形,點(diǎn)睛:平行四邊形的判定:有一組對(duì)邊平行且相等的四邊形是平行四邊形.19、(1)∠EPF=120°;(2)AE+AF=6.【解析】試題分析:(1)過點(diǎn)P作PG⊥EF于G,解直角三角形即可得到結(jié)論;

(2)如圖2,過點(diǎn)P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點(diǎn)P作PG⊥EF于G,

∵PE=PF,

∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,

在△FPG中,sin∠FPG=,

∴∠FPG=60°,

∴∠EPF=2∠FPG=120°;

(2)如圖2,過點(diǎn)P作PM⊥AB于M,PN⊥AD于N,

∵四邊形ABCD是菱形,

∴AD=AB,DC=BC,

∴∠DAC=∠BAC,

∴PM=PN,

在Rt△PME于Rt△PNF中,,

∴Rt△PME≌Rt△PNF,

∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,

∴AM=AP?cos30°=3,同理AN=3,

∴AE+AF=(AM-EM)+(AN+NF)=6.【點(diǎn)睛】運(yùn)用了菱形的性質(zhì),解直角三角形,全等三角形的判定和性質(zhì),最值問題,等腰三角形的性質(zhì),作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.20、(1)作圖見解析;(2)證明書見解析.【解析】

(1)以點(diǎn)N為圓心,以MQ長度為半徑畫弧,以點(diǎn)M為圓心,以NQ長度為半徑畫弧,兩弧交于一點(diǎn)F,則△MNF為所畫三角形.(2)延長DA至E,使得AE=CB,連結(jié)CE.證明△EAC≌△BCA,得:∠B=∠E,AB=CE,根據(jù)等量代換可以求得答案.【詳解】解:(1)如圖1,以N為圓心,以MQ為半徑畫圓??;以M為圓心,以NQ為半徑畫圓弧;兩圓弧的交點(diǎn)即為所求.(2)如圖,延長DA至E,使得AE=CB,連結(jié)CE.∵∠ACB+∠CAD=180°,∠DACDAC+∠EAC=180°,∴∠BACBCA=∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA(SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考點(diǎn):1.尺規(guī)作圖;2.全等三角形的判定和性質(zhì).21、2-【解析】

先求三角函數(shù),再根據(jù)實(shí)數(shù)混合運(yùn)算法計(jì)算.【詳解】解:原式=2×1-1-=1+1-=2-【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)三角函數(shù)值的應(yīng)用,掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.22、1【解析】試題分析:原式第一項(xiàng)括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分后,兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算得到最簡結(jié)果,已知方程變形后代入計(jì)算即可求出值.試題解析:原式=∵x2?x?1=0,∴x2=x+1,則原式=1.23、(1);(2)k=-3【解析】

(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當(dāng)x1+x2≥0時(shí),則有x1+x2=x1·x2-1,即2(k-1)=k2-1;②當(dāng)x1+x2<0時(shí),則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【詳解】解:(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0解得(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當(dāng)x1+x2≥0時(shí),則有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論