版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省徐州市部分2024年中考考前最后一卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°2.如圖,將矩形ABCD沿EM折疊,使頂點(diǎn)B恰好落在CD邊的中點(diǎn)N上.若AB=6,AD=9,則五邊形ABMND的周長為()A.28 B.26 C.25 D.223.下列四個(gè)實(shí)數(shù)中,比5小的是()A. B. C. D.4.如圖所示的幾何體,上下部分均為圓柱體,其左視圖是()A. B. C. D.5.一個(gè)多邊形的內(nèi)角和比它的外角和的倍少180°,那么這個(gè)多邊形的邊數(shù)是()A.7 B.8 C.9 D.106.如圖,是由一個(gè)圓柱體和一個(gè)長方體組成的幾何體,其主視圖是()A. B. C. D.7.如圖,一個(gè)斜坡長130m,坡頂離水平地面的距離為50m,那么這個(gè)斜坡的坡度為(
)A. B. C. D.8.一個(gè)多邊形的邊數(shù)由原來的3增加到n時(shí)(n>3,且n為正整數(shù)),它的外角和()A.增加(n﹣2)×180° B.減小(n﹣2)×180°C.增加(n﹣1)×180° D.沒有改變9.下列計(jì)算正確的是()A.3a2﹣6a2=﹣3B.(﹣2a)?(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a610.已知x1,x2是關(guān)于x的方程x2+ax-2b=0的兩個(gè)實(shí)數(shù)根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-1二、填空題(共7小題,每小題3分,滿分21分)11.有4根細(xì)木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個(gè)三角形的概率是__________.12.如圖,在5×5的正方形(每個(gè)小正方形的邊長為1)網(wǎng)格中,格點(diǎn)上有A、B、C、D、E五個(gè)點(diǎn),如果要求連接兩個(gè)點(diǎn)之后線段的長度大于3且小于4,則可以連接_____.(寫出一個(gè)答案即可)13.如圖,將量角器和含30°角的一塊直角三角板緊靠著放在同一平面內(nèi),使三角板的0cm刻度線與量角器的0°線在同一直線上,且直徑DC是直角邊BC的兩倍,過點(diǎn)A作量角器圓弧所在圓的切線,切點(diǎn)為E,則點(diǎn)E在量角器上所對應(yīng)的度數(shù)是____.14.在一次射擊訓(xùn)練中,某位選手五次射擊的環(huán)數(shù)分別為5,8,7,6,1.則這位選手五次射擊環(huán)數(shù)的方差為.15.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個(gè)動(dòng)點(diǎn),AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.16.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.17.如圖,點(diǎn)A(m,2),B(5,n)在函數(shù)(k>0,x>0)的圖象上,將該函數(shù)圖象向上平移2個(gè)單位長度得到一條新的曲線,點(diǎn)A、B的對應(yīng)點(diǎn)分別為A′、B′.圖中陰影部分的面積為8,則k的值為.三、解答題(共7小題,滿分69分)18.(10分)如圖,菱形中,分別是邊的中點(diǎn).求證:.19.(5分)如圖,正方形ABCD中,E,F(xiàn)分別為BC,CD上的點(diǎn),且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長.20.(8分)如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于點(diǎn)F.(1)求證:;(2)請?zhí)骄烤€段DE,CE的數(shù)量關(guān)系,并說明理由;(3)若CD⊥AB,AD=2,BD=3,求線段EF的長.21.(10分)如圖,將等腰直角三角形紙片ABC對折,折痕為CD.展平后,再將點(diǎn)B折疊在邊AC上(不與A、C重合),折痕為EF,點(diǎn)B在AC上的對應(yīng)點(diǎn)為M,設(shè)CD與EM交于點(diǎn)P,連接PF.已知BC=1.(1)若M為AC的中點(diǎn),求CF的長;(2)隨著點(diǎn)M在邊AC上取不同的位置,①△PFM的形狀是否發(fā)生變化?請說明理由;②求△PFM的周長的取值范圍.22.(10分)化簡求值:,其中.23.(12分)如圖所示,A、B兩地之間有一條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達(dá),現(xiàn)在新建了橋EF(EF=DC),可直接沿直線AB從A地到達(dá)B地,已知BC=12km,∠A=45°,∠B=30°,橋DC和AB平行.(1)求橋DC與直線AB的距離;(2)現(xiàn)在從A地到達(dá)B地可比原來少走多少路程?(以上兩問中的結(jié)果均精確到0.1km,參考數(shù)據(jù):≈1.14,≈1.73)24.(14分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點(diǎn)Q,對于平面內(nèi)的點(diǎn)P與正方形ABCD,給出如下定義:如果,則稱點(diǎn)P為正方形ABCD的“關(guān)聯(lián)點(diǎn)”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點(diǎn)”有_____;(2)已知點(diǎn)E的橫坐標(biāo)是m,若點(diǎn)E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對角線交點(diǎn)Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點(diǎn).如果線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求n的取值范圍.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點(diǎn)睛:本題考查了三角形、四邊形內(nèi)角和定理,掌握n邊形內(nèi)角和為(n﹣2)×180°(n≥3且n為整數(shù))是解題的關(guān)鍵.2、A【解析】
如圖,運(yùn)用矩形的性質(zhì)首先證明CN=3,∠C=90°;運(yùn)用翻折變換的性質(zhì)證明BM=MN(設(shè)為λ),運(yùn)用勾股定理列出關(guān)于λ的方程,求出λ,即可解決問題.【詳解】如圖,由題意得:BM=MN(設(shè)為λ),CN=DN=3;∵四邊形ABCD為矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五邊形ABMND的周長=6+5+5+3+9=28,故選A.【點(diǎn)睛】該題主要考查了翻折變換的性質(zhì)、矩形的性質(zhì)、勾股定理等幾何知識(shí)點(diǎn)及其應(yīng)用問題;解題的關(guān)鍵是靈活運(yùn)用翻折變換的性質(zhì)、矩形的性質(zhì)、勾股定理等幾何知識(shí)點(diǎn)來分析、判斷、推理或解答.3、A【解析】
首先確定無理數(shù)的取值范圍,然后再確定是實(shí)數(shù)的大小,進(jìn)而可得答案.【詳解】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此選項(xiàng)正確;B、∵∴,故此選項(xiàng)錯(cuò)誤;C、∵6<<7,∴5<﹣1<6,故此選項(xiàng)錯(cuò)誤;D、∵4<<5,∴,故此選項(xiàng)錯(cuò)誤;故選A.【點(diǎn)睛】考查無理數(shù)的估算,掌握無理數(shù)估算的方法是解題的關(guān)鍵.通常使用夾逼法.4、C【解析】試題分析:∵該幾何體上下部分均為圓柱體,∴其左視圖為矩形,故選C.考點(diǎn):簡單組合體的三視圖.5、A【解析】
設(shè)這個(gè)正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設(shè)這個(gè)多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點(diǎn)睛】本題主要考查多邊形內(nèi)角與外角的知識(shí)點(diǎn),此題要結(jié)合多邊形的內(nèi)角和與外角和,根據(jù)題目中的等量關(guān)系,構(gòu)建方程求解即可.6、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據(jù)立體圖形可得:主視圖的上面和下面各為一個(gè)矩形,且下面矩形的長比上面矩形的長要長一點(diǎn),兩個(gè)矩形的寬一樣大?。键c(diǎn):三視圖.7、A【解析】試題解析:∵一個(gè)斜坡長130m,坡頂離水平地面的距離為50m,∴這個(gè)斜坡的水平距離為:=10m,∴這個(gè)斜坡的坡度為:50:10=5:1.故選A.點(diǎn)睛:本題考查解直角三角形的應(yīng)用-坡度坡角問題,解題的關(guān)鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個(gè)比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.8、D【解析】
根據(jù)多邊形的外角和等于360°,與邊數(shù)無關(guān)即可解答.【詳解】∵多邊形的外角和等于360°,與邊數(shù)無關(guān),∴一個(gè)多邊形的邊數(shù)由3增加到n時(shí),其外角度數(shù)的和還是360°,保持不變.故選D.【點(diǎn)睛】本題考查了多邊形的外角和,熟知多邊形的外角和等于360°是解題的關(guān)鍵.9、B【解析】
根據(jù)整式的運(yùn)算法則分別計(jì)算可得出結(jié)論.【詳解】選項(xiàng)A,由合并同類項(xiàng)法則可得3a2﹣6a2=﹣3a2,不正確;選項(xiàng)B,單項(xiàng)式乘單項(xiàng)式的運(yùn)算可得(﹣2a)?(﹣a)=2a2,正確;選項(xiàng)C,根據(jù)整式的除法可得10a10÷2a2=5a8,不正確;選項(xiàng)D,根據(jù)冪的乘方可得﹣(a3)2=﹣a6,不正確.故答案選B.考點(diǎn):合并同類項(xiàng);冪的乘方與積的乘方;單項(xiàng)式乘單項(xiàng)式.10、A【解析】
根據(jù)根與系數(shù)的關(guān)系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關(guān)于x的方程x2+ax﹣2b=0的兩實(shí)數(shù)根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據(jù)題意,使用列舉法可得從有4根細(xì)木棒中任取3根的總共情況數(shù)目以及能搭成一個(gè)三角形的情況數(shù)目,根據(jù)概率的計(jì)算方法,計(jì)算可得答案.【詳解】根據(jù)題意,從有4根細(xì)木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個(gè)三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點(diǎn)睛】本題考查概率的計(jì)算方法,使用列舉法解題時(shí),注意按一定順序,做到不重不漏.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.12、答案不唯一,如:AD【解析】
根據(jù)勾股定理求出,根據(jù)無理數(shù)的估算方法解答即可.【詳解】由勾股定理得:,.故答案為答案不唯一,如:AD.【點(diǎn)睛】本題考查了無理數(shù)的估算和勾股定理,如果直角三角形的兩條直角邊長分別是,,斜邊長為,那么.13、60.【解析】
首先設(shè)半圓的圓心為O,連接OE,OA,由題意易得AC是線段OB的垂直平分線,即可求得∠AOC=∠ABC=60°,又由AE是切線,易證得Rt△AOE≌Rt△AOC,繼而求得∠AOE的度數(shù),則可求得答案.【詳解】設(shè)半圓的圓心為O,連接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切線,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴點(diǎn)E所對應(yīng)的量角器上的刻度數(shù)是60°,故答案為:60.【點(diǎn)睛】本題考查了切線的性質(zhì)、全等三角形的判定與性質(zhì)以及垂直平分線的性質(zhì),解題的關(guān)鍵是掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.14、2.【解析】試題分析:五次射擊的平均成績?yōu)?(5+7+8+6+1)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.考點(diǎn):方差.15、1【解析】
如圖作點(diǎn)D關(guān)于BC的對稱點(diǎn)D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當(dāng)E、F、P、D′共線時(shí),PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點(diǎn)D關(guān)于BC的對稱點(diǎn)D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當(dāng)E、F、P、D′共線時(shí),PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點(diǎn)睛】本題考查翻折變換、矩形的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對稱,根據(jù)兩點(diǎn)之間線段最短解決最短問題.16、【解析】mn(n-m)-n(m-n)=mn(n-m)+n(n-m)=n(n-m)(m+1),故答案為n(n-m)(m+1).17、2.【解析】試題分析:∵將該函數(shù)圖象向上平移2個(gè)單位長度得到一條新的曲線,點(diǎn)A、B的對應(yīng)點(diǎn)分別為A′、B′,圖中陰影部分的面積為8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案為2.考點(diǎn):2.反比例函數(shù)系數(shù)k的幾何意義;2.平移的性質(zhì);3.綜合題.三、解答題(共7小題,滿分69分)18、證明見解析.【解析】
根據(jù)菱形的性質(zhì),先證明△ABE≌△ADF,即可得解.【詳解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵點(diǎn)E,F(xiàn)分別是BC,CD邊的中點(diǎn),∴BE=BC,DF=CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.19、(1)見解析;(2)正方形的邊長為.【解析】
(1)由正方形的性質(zhì)得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結(jié)論;(2)證出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出結(jié)果.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足為G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE與△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四邊形ABCD為正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,∴()2=x?(2+x),解得:x1=1,x2=﹣3(不合題意舍去),∴AE=3,∴AB===.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等知識(shí),熟練掌握正方形的性質(zhì),證明三角形全等與相似是解題的關(guān)鍵.20、(1)證明見解析;(2)DE=CE,理由見解析;(3).【解析】試題分析:(1)證明△ABE∽△ACD,從而得出結(jié)論;(2)先證明∠CDE=∠ACD,從而得出結(jié)論;(3)解直角三角形示得.試題解析:(1)∵∠ABE
=∠ACD,∠A=∠A,∴△ABE∽△ACD,∴;(2)∵,∴,又∵∠A=∠A,∴△ADE∽△ACB,∴∠AED
=∠ABC,∵∠AED
=∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,∴∠ACD+∠CDE=∠ABE+∠CBE,∵∠ABE
=∠ACD,∴∠CDE=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CDE=∠ABE=∠ACD,∴DE=CE;(3)∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=∠CDE+∠ADE=90°,∵∠ABE
=∠ACD,∠CDE=∠ACD,∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,∴AE=DE,BE⊥AC,∵DE=CE,∴AE=DE=CE,∴AB=BC,∵AD=2,BD=3,∴BC=AB=AD+BD=5,在Rt△BDC中,,在Rt△ADC中,,∴,∵∠ADC=∠FEC=90°,∴,∴.21、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會(huì)發(fā)生變化,理由見解析;②△PFM的周長滿足:2+2<(1+)y<1+1.【解析】
(1)由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據(jù)FM2=CF2+CM2,構(gòu)建方程即可解決問題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長即可解決問題;②設(shè)FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長=(1+)y,由2<y<1,可得結(jié)論.【詳解】(1)∵M(jìn)為AC的中點(diǎn),∴CM=AC=BC=2,由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,F(xiàn)M2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會(huì)發(fā)生變化,理由如下:由折疊的性質(zhì)可知,∠PMF=∠B=15°,∵CD是中垂線,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴,∴,∴,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,設(shè)FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周長=(1+)y,∵2<y<1,∴△PFM的周長滿足:2+2<(1+)y<1+1.【點(diǎn)睛】本題考查三角形綜合題、等腰直角三角形的性質(zhì)和判定、翻折變換、相似三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是正確尋找相似三角形解決問題,學(xué)會(huì)利用參數(shù)解決問題,屬于中考??碱}型.22、【解析】分析:先把小括號(hào)內(nèi)的通分,按照分式的減法和分式除法法則進(jìn)行化簡,再把字母的值代入運(yùn)算即可.詳解:原式當(dāng)時(shí),點(diǎn)睛:考查分式的混合運(yùn)算,掌握運(yùn)算順序是解題的關(guān)鍵.23、(1)橋DC與直線AB的距離是6.0km;(2)現(xiàn)在從A地到達(dá)B地可比原來少走的路程是4.1km.【解析】
(1)過C向AB作垂線構(gòu)建三角形,求出垂線段的長度即可;(2)過點(diǎn)D向AB作垂線,然后根據(jù)解三角形求出AD,CB的長,進(jìn)而求出現(xiàn)在從A地到達(dá)B地可比原來少走的路程.【詳解】解:(1)作CH⊥AB于點(diǎn)H,如圖所示,∵BC=12km,∠B=30°,∴km,BH=km,即橋DC與直線AB的距離是6.0km;(2)作DM⊥AB于點(diǎn)M,如圖所示,∵橋DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園種植水果課程設(shè)計(jì)
- jsp購書課程設(shè)計(jì)報(bào)告
- 幼兒太陽花手工課程設(shè)計(jì)
- 投入產(chǎn)出經(jīng)營課程設(shè)計(jì)
- 廣東省課程設(shè)計(jì)
- 山東科技職業(yè)學(xué)院《科學(xué)與工程計(jì)算》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東科技大學(xué)《塑性加工設(shè)備》2023-2024學(xué)年第一學(xué)期期末試卷
- 拓?fù)渌惴?課程設(shè)計(jì)
- 幼兒園小班孵蛋課程設(shè)計(jì)
- 數(shù)據(jù)庫相關(guān)的課程設(shè)計(jì)
- 領(lǐng)導(dǎo)力:如何在組織中成就卓越
- 小學(xué)校本課程《跳繩》教材
- 《Baby》Justin-Bieber版歌詞完整版打印下載打印
- 公司業(yè)務(wù)拓展方案
- 羊場飼管理制度
- 微積分考試題庫(附答案)
- 鑄牢中華民族共同體意識(shí)調(diào)查報(bào)告
- 2023醫(yī)美術(shù)后科學(xué)修護(hù)指南
- 高中化學(xué)學(xué)好化學(xué)必備的五大核心素養(yǎng)
- 江蘇省蘇州大學(xué)附屬中學(xué)2023-2024學(xué)年高一上學(xué)期12月月考英語試卷(解析版)
- 2023年大學(xué)生心理健康教育試題題庫含答案
評(píng)論
0/150
提交評(píng)論