版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
EMERGING
SPACE
BRIEFCarbon
NanotubesAli
JavaheriAnalyst,
Emerging
Technologyali.javaheri@Originally
published
on
January
18,
2024pbinstitutionalresearch@Trending
companiesOverviewCarbon
nanotubes(CNTs)
arenanoscalesheets
ofgraphene
rolledintoacylindricaltube.
CNTs
havespecialfeaturesand
abilities,some
ofwhicharesimilartographitewhileotherscomefromtheirtube-like,one-dimensionalshape.
Depending
on
theirspecificstructure,
CNTs
can
behavelikemetalsor
semiconductors,
whicharekeyinelectronicdevices.MetallicCNTs,inparticular,can
conduct
electricity
over1000xbetter
thancommon
metals,
suchas
copper.Theyhaveauniquewayofconductingelectricity
thatmakesthemextremely
efficient
and
mobile,
surpassingmanystandardsemiconductors.CarbonnanotubesVCdealactivityCNTs
aremuch
strongerthansteel,and
theyconduct
heat
better
thandiamond.Theyalsohaveavery
highsurface
arearelativetotheirsize,whichmakesthemquitelightand
strong.CNTs
arealsohighlystableand
can
resistmost
chemicalreactions,
unlesstheyareexposed
tohighheat
and
oxygen.These
propertiesmakeCNTs
excellentforawiderangeofapplications,includingvariouselectronic37353534components,
sensors,
batteries,
and
materialsforprotectingagainst
electricity.12219BackgroundThe
historyofCNTs
isatapestry
ofdiscoveryand
debate.The
material’soriginscan
be
tracedback
to1952when
SovietscientistsL.V.
Radushkevichand
V.M.Lukyanovichpublishedimagesofnanometer-sizedcarbon
tubes,
thoughthisearlyworkwaslargelyoverlookeddue
tolimitedaccesstoSovietscientificresearchfor2018
2019
2020
2021
2022
2023*Deal
value($M)
Deal
countWesterncolleagues.
The
term“carbonnanotubes”wascoinedbySumioIijimain21991
when
he
observed
needle-likecarbon
structures
under
anelectron
microscope,whichhe
identifiedas
multiwalledcarbon
nanotubes.
Single-walledvariantswerediscoveredshortly
after
in1993.
The
theoreticalpredictionsand
subsequentexperimentalconfirmationsofCNTs’
uniqueelectrical
properties
fueled
asurgeinresearchand
potentialindustrialapplications,makingthemacornerstoneofSource:
PitchBook
?
Geography:
Global*AsofJanuary
9,2024nanotechnology
and
materialsscience.31:“Carbon
Nanotube,”
ScienceDirect,
Waqar
Ahmed,
et
al.,
n.d.,
accessed
January
10,
2024.2:
“ABrief
Introduction
ofCarbon
Nanotubes:
History,
Synthesis,
and
Properties,”
IOP
Publishing,
Junqi
Chen,
et
al.,
2021.3:
“Sumio
Iijima,”
International
Balzan
PrizeFoundation,
n.d.,
accessed
January
10,
2024.1Emerging
Space
Brief:
Carbon
NanotubesTechnologies
andprocessesTypes
of
carbonnanotubesSingle-walledand
multiwalledcarbon
nanotubesarethetwomaintypes
ofCNTs,withthethirdtype
beingtheless-commondouble-walledCNT.Single-walled
carbon
nanotubes(SWNTs):
These
nanotubesarecomposed
ofasinglelayerofgraphene
rolledintoacylindricalshape.
Theyareknownfortheirremarkableelectrical
properties,
whichcan
vary
frommetallictosemiconductingdepending
on
theirgeometry
and
diameter.SWNTstypicallyhavediametersrangingfromabout
1to2nanometers.
Due
totheiruniformstructure,
theyoffer
highaspectratiosand
exceptionalmechanicalstrength,
makingthemidealforapplicationsinnanoelectronics,
sensors,
and
variouscompositematerials.4Multiwalledcarbon
nanotubes(MWNTs):
Thistype
ofnanotubeconsistsofmultiplelayersofgraphene,
each
formingaconcentrictubearoundtheother,resemblingasetofnestedcylinders.
Theygenerallyhavediametersrangingfrom7to100
nanometers.
MWNTs
areknownfortheirincreasedthermaland
electricalconductivity
comparedwithSWNTs,but
theyhavefeweruniformelectronicproperties.
Their
multilayeredstructureprovidesenhanced
mechanicalstrength,whichisbeneficialforapplicationsinmaterialsreinforcement,energy
storage,andnanodevices.5Double-walled
carbon
nanotubes(DWNTs):
Thisvariantisaspecialtype
ofMWNTthathasexactlytwoconcentricgraphene
layers.Theycombinesome
properties
ofbothSWNTsand
MWNTs,offeringabalancebetween
thestrength
and
flexibilityofMWNTs
and
theelectrical
properties
ofSWNTs.DWNTs
areless
common
thantheothertwotypes
and
areparticularlyinterestingforresearchdue
totheiruniqueelectronicand
mechanicalproperties,
whichmakethemsuitableforapplicationslikenano-electromechanical
systemsand
high-strengthmaterials.6Carbonnanotube
synthesis
techniques7Chemical
vapor
deposition(CVD):
CVD
isapopularmethodforproducingCNTs,especiallyvaluedforits
precisecontrolovernanotubecharacteristicslikelength,diameter,alignment,and
purity.Thismethod,
typicallyoperatingattemperaturesbelow800
degrees
Celsius(C),
involvesthechemicalbreakdownofhydrocarbonson
asubstrate,often
inthepresenceofmetalliccatalystslikenickel,cobalt,oriron.TypesofCVD
includethermalcatalytic
chemicalvapordeposition,plasma-enhanced
CVD,and
others.
Its
advantagesareits
simplicity,lowtemperature,highpurity,and
suitabilityforlarge-scale,alignedgrowthofCNTs.Laser
ablation:
Inlaserablation,high-poweredlaservaporization(typicallyYAGtype)heats
ablock
ofpuregraphiteinafurnaceataround1,200
degrees
Cinanargonatmosphere.
Metalparticles
areoften
added
as
catalysts.
Thismethodis4:
“Single-Walled
Carbon
Nanotubes:
Structure,
Properties,
Applications,
and
Health
&
Safety,”
OCSiAl,
Marina
Filchakova
and
Vladimir
Saik,
May
12,
2021.5:
“Applications
of
Multi-Walled
Carbon
Nanotubes,”
Nanografi,
Emilia
Coldwell,
May
17,2021.6:
“Double
Walled
Carbon
Nanotubes
(DWCNTs)-
Nanografi
Blog,”
Nanografi,
Arslan
Safder,
June
21,
2019.7:“Carbon
Nanotubes:
Properties,
Synthesis,
Purification,
and
Medical
Applications,”
Nanoscale
Research
Letters,
Ali
Eatemadi,
August
13,
2014.2Emerging
Space
Brief:
Carbon
NanotubesknownforproducingSWNTswithhighpurity
and
quality.The
diameterofthenanotubesdepends
on
thelaserpower.Anotablebenefit
isits
highyieldand
lowmetallicimpurities,but
thismethodisnoteconomicallyadvantageousforlarge-scale
production
and
thenanotubesproducedmaynotbe
uniformlystraight.Carbon
arc
discharge:
Thistechniqueinvolveshightemperatures(above1,700degrees
C)
and
uses
arcdischargebetween
high-puritygraphiteelectrodes
inaheliumenvironment.Itiseffective
forcreatingfewerstructural
defects
inCNTs
andcan
producebothSWNTsand
MWNTs.The
methodboasts
highyieldsofSWNTswithanaveragediameterof1.4
nanometers.
The
mainadvantageisits
potentialforlarge-quantityproduction,
but
itoffers
littlecontrolovernanotubealignmentandrequirespurificationdue
tometalliccatalysts.Purification8The
purificationofcarbon
nanotubes(CNTs)
involvesaseries
ofstepstoremoveimpuritieslikeamorphous
carbon,
metalcatalystparticles,
and
othercarbonaceousmaterials.These
stepsincludeacidtreatment,often
usingconcentratedacidslikenitricor
hydrochloricacid,todissolvemetalparticles.
Filtrationand
centrifugationtechniquesareemployedtoseparateCNTs
fromlargergraphiteparticles
andsolvents.
Additionally,thermaloxidationisused
toeliminateamorphous
carbon,whilesizeexclusionchromatographyand
ultrasonicationaidinseparatinganddispersingnanotubes.
These
methodsvary
incomplexityand
effectiveness,
and
arecrucialforachievingthehighpurity
requiredforspecificapplicationsofCNTs.Thedevelopmentofsingle-step,nondestructive
purificationprocesses
thatmaintaintheproperties
ofCNTs
isacrucialareaforfutureresearch.ApplicationsBiological
and
biomedical
research:CNTshaveshown
promise
in
improvingmechanical
properties
ofbiodegradable
polymeric
nanocomposites
for
tissueengineering
applications
with
materials
such
as
bone,
cartilage,
muscle,
and
nervetissue.
Due
totheir
compatibility
with
biomolecules
likeDNA
and
proteins,
CNTshavebeen
utilized
in
fluorescent
and
photoacoustic
imaging,
localized
heating
for
cancertherapy,
and
biosensors
for
detecting
various
biological
substances.Composite
materials:CNTsare
incorporated
intomaterials
toenhance
theirmechanical
properties,
making
them
applicable
in
items
ranging
from
everyday
goodslikeclothes
and
sports
geartospecialized
applications
such
as
combat
jackets
andspace
elevators.
Their
high
mechanical
strength
and
conductivity
haveled
totheir
usein
manufacturing
wind
turbine
blades,
maritime
security
boats,
and
sports
goods.Microelectronics:
Carbon
nanotube
field-effect
transistors
and
other
electroniccomponents
made
from
CNTshavebeen
developed,
showing
the
potential
tooperateat
room
temperature
and
perform
digital
switching
using
a
single
electron.
They
areconsidered
alternatives
totraditional
materials
in
various
electronic
devices,
offeringimprovements
in
performance
and
size.8:
“Carbon
Nanotubes:
Properties,
Synthesis,
Purification,
and
Medical
Applications,”
Nanoscale
Research
Letters,
Ali
Eatemadi,
August
13,
2014.3Emerging
Space
Brief:
Carbon
NanotubesEnergy
storageand
solar
cells:
CNTs
havebeen
appliedinenergy
storagedeviceslikesupercapacitorsand
batteries,
improvingcapacity
and
cyclability.Insolarcells,CNTs
contributetoincreasedefficiency
throughtheirstrongUV,
visible,and
near-infraredlightabsorptioncharacteristics,and
theyarebeingexploredas
potentialreplacements
forindiumtinoxideinphotovoltaicdevices.Hydrogenstorage:Researchhasfocused
on
usingCNTs
forstoringhydrogengasathighdensitieswithoutcondensingitintoaliquid,providingapotentialsolutionforhydrogen-poweredvehiclesbyallowingstorageinits
gaseous
state,therebyincreasingefficiency.Environmental
remediation:
CNTs
havebeen
used
inwatertreatmentprocessesas
theyexhibitstrongadsorptionaffinities
forvariouscontaminants.Theyarealsobeingexploredforairpurificationas
wellas
fordevelopingcoatingsand
materialsforenvironmentalcleanupapplications.LimitationsCNTs
facesignificantlimitations,particularlyintermsofscalabilityand
costaswellas
environmentaland
healthconcerns.
Scalabilityremainsamajorissue,
asproducinghigh-qualityCNTs
on
alargescale
isexpensive,withthecostofsingle-walledCNTs
rangingfrom$75per
gram
to$300
per
gram.
Thishighcostisa9barriertotheirwidespreaduse,
especiallyinapplicationsrequiringlargequantities.Additionally,ensuringconsistentqualityduringmass
production
ischallenging;issues
likeimpurityand
structural
defects
can
significantlyaffect
theelectrical
andmechanicalproperties
ofCNTs.Environmentaland
healthconcernsalsopose
limitations.The
impact
ofCNTs
onhumanhealthand
theenvironmentisnotyetfullyunderstood,
leadingtohesitationsintheiruse,
particularlyinconsumerproducts.
Potentialtoxicityand
theeffects
oflong-termexposuretoCNTs
requirecarefulconsiderationand
management.
Thesechallengesunderscore
theneed
foradvancements
intheproduction
ofCNTs,aimedatimprovingscalabilityand
cost-effectiveness,whilealsoaddressingsafetyandenvironmentalconcerns.Recentdealactivityandmarket
outlookRecentventurecapitalactivity
intheCNTmarkethighlightsthegrowinginterestinsophisticatedenergy
storagesolutions,whichareessentialforthetransitiontocleanenergy.Omega
Power’ssignificant$18.0
millionSeries
AfundinginJuly2023,
aimedatadvancingtheirCNT-basedlithiumbattery
electrodes,
underscoresthistrend.Additionally,Nano-C’simpressive$50.0
millionfundinginJanuary2023,
cateringtoadiverserangeofapplicationsfromrenewableenergy
tosemiconductors,
reflects
thebroadpotentialofCNTs.However,2022markedanexceptionalyear,largelydue
toOCSiAl’ssubstantial$300.0
millionroundinMarch.Excludingthis,2022experiencedadipindeal
activity,parallelingtrendsinthebroader
venturecapitalmarketof2021.Yet,
2023witnessedaresurgence,indicatingafluctuatingbut
promisingtrajectory
inCNTdeal
activity
overthepast
fiveyears.9:
“Single
Walled
Carbon
Nanotubes,”
Cheap
Tubes,
n.d.,
accessed
January
10,
2024.4Emerging
Space
Brief:
Carbon
NanotubesQuantitative
perspective194552492$2.5BForadeeper
diveintothedataand
toexploreadditionalinsights,
visitthePitchBookPlatformor
request
a
free
trial.companiesdealsinvestorscapitalinvested43deals(TTM)-10.4%
YoY$1.5Mmediandealsize(TTM)$9.8Mmedianpost-moneyvaluation(TTM)-35.9%YoY$180.4Mcapitalinvested(TTM)29.5%YoY-77.7%
YoY*AsofJanuary
9,2024Top
carbonnanotubescompaniesby
totalraised*Totalraised($M)Latest
deal
value($M)CompanyLast
deal
dateDeal
typeHQ
locationYearfoundedOCSiAl$300.0$273.2$169.0$155.8$128.0$115.8$75.6$300.0$84.0N/AMarch
29,2022April
1,
2020Late-stage
VCM&ALeudelange,
Luxembourg
2009SusnShenzhen,
ChinaWoburn,
US2011NanteroCNanoAugust
2,
2021July
15,
2019M&A20012007200120182004$134.8$50.0$100.0$17.7IPOZhenjiang,
ChinaWestwood,
USSanta
Cruz,
USVantaa,
FinlandNano-CPrometheusCanatuJanuary
5,
2023September
23,
2021November
1,
2022Late-stage
VCEarly-stage
VCLate-stage
VCChangxin
ChemicalTechnology$75.3$71.1N/AJanuary
6,
2023IPODezhou,
China200919942004JEIO
Co$97.1$2.2November
18,
2022December
31,
2021IPOIncheon,
South
KoreaMerrimack,
USNanocompTechnologies$54.7GrantSource:
PitchBook
?
Geography:
Global
?
*AsofJanuary
9,20245Emerging
Space
Brief:
Carbon
NanotubesTop
carbonnanotubescompaniesby
ExitPredictoropportunityscore*OpportunityscoreSuccessprobabilityM&AprobabilityTotalraised($M)CompanyIPO
probabilityHQ
locationYearfoundedPicopack95938988878380727176%85%81%79%94%75%73%85%65%56%53%82%80%77%60%74%72%79%62%43%23%3%1%$5.8Daejeon,
South
KoreaAtlanta,
US20162011Carbice$16.5$3.6Aligned
CarbonCensSanta
Clara,
US201820142009201920182018200520152%34%1%$4.9Tel
Aviv,IsraelOCSiAl$300.0$5.0Leudelange,
LuxembourgTallinn,
EstoniaUP
CatalystMattrix
TechnologiesAwexome
RayMeijo
Nano
CarbonNovaSolix1%$8.0$14.3$7.2Gainesville,
US6%3%13%Anyang-si,
South
KoreaNagoya,
Japan68$22.7Newark,
USSource:
PitchBook
?
Geography:
Global
?
*AsofJanuary
9,2024Note:Probabilitydatabased
on
PitchBook
VCExit
Predictor
Methodology.Top
carbonnanotubescompaniesby
numberofactivepatents*CompanyActive
patent
documents
Totalraised
($M)
HQ
locationYearfounded2001Nantero431395$169.0N/AWoburn,
USRolla,
USBrewer
Science1981Hyperion
CatalysisInternational22215412898N/ACambridge,
USWestwood,
USMerrimack,
US198220012004Nano-C$128.0$54.7$5.5NanocompTechnologiesBNNT
MaterialsNewport
News,
US
2010Molecular
RebarDesign96N/AAustin,
US2012Canatu836358$75.6N/AVantaa,
FinlandCalgary,
Canada20041987C2CNTThermoheldN/ABayreuth,
Germany
2002Source:
PitchBook
?
Geography:
Global
?
*Asof
January
9,20246Emerging
Space
Brief:
Carbon
NanotubesTop
carbonnanotubesinvestors*InvestorInvestmentsHQ
locationNational
Science
FoundationUnited
States
Department
of
DefenseUS
Department
of
EnergyUnited
States
Air
Force180
Degree
Capital212012105Alexandria,
USWashington,
USWashington,
USUniversal
City,
USMontclair,
USSan
Francisco,
USWashington,
USBethesda,
USMenlo
Park,
USBoston,
USCRV5National
Aeronautics
and
Space
AdministrationNIH
Seed55Draper
Fisher
Jurvetson
ManagementGlobespan
Capital
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版高中地理必修第一冊(cè)第一章宇宙中的地球第二節(jié)太陽(yáng)對(duì)地球的影響練習(xí)含答案
- 2024年一手房銷售顧問(wèn)突發(fā)事件應(yīng)對(duì)與危機(jī)處理合同3篇
- 2024年滬科新版六年級(jí)語(yǔ)文下冊(cè)月考試卷432
- 有關(guān)水的課程設(shè)計(jì)
- 椰子剝皮機(jī)課程設(shè)計(jì)理念
- 2024年新材料知識(shí)產(chǎn)權(quán)共享協(xié)議3篇
- 2024年外研版六年級(jí)語(yǔ)文下冊(cè)月考試卷62
- 2021-2022學(xué)年江蘇省丹陽(yáng)市新區(qū)二年級(jí)下冊(cè)數(shù)學(xué)期末試題及答案
- 橋梁工程拱橋課程設(shè)計(jì)
- 2023-2024學(xué)年山東省煙臺(tái)市高二(上)期末語(yǔ)文試卷
- DB45T 2760-2023 電子政務(wù)外網(wǎng)網(wǎng)絡(luò)技術(shù)規(guī)范
- 2025版中考物理復(fù)習(xí)課件 09 專題五 類型3 電學(xué)綜合應(yīng)用題(不含效率)(10年6考)
- 2024年度承包合同:石灰石生產(chǎn)線承包2篇
- 2024年度社區(qū)養(yǎng)老社會(huì)工作服務(wù)項(xiàng)目協(xié)議書3篇
- 青海省西寧市2021-2022學(xué)年八年級(jí)上學(xué)期期末歷史試題(解析版)
- 2024統(tǒng)編版七年級(jí)上冊(cè)語(yǔ)文期末復(fù)習(xí):名著閱讀 練習(xí)題匯編(含答案解析)
- 2024年物業(yè)管理員(中級(jí))職業(yè)鑒定考試題庫(kù)(含答案)
- 統(tǒng)編版(2024版)七年級(jí)上冊(cè)歷史:期末復(fù)習(xí)課件
- 國(guó)開(kāi)(陜西)2024年《中國(guó)制造之高端裝備》形考作業(yè)1-4答案
- 工會(huì)新聞寫作培訓(xùn)課題
- 人力資源規(guī)劃
評(píng)論
0/150
提交評(píng)論