PitchBook-新興空間簡(jiǎn)介:碳納米管(英)-2024.1_第1頁(yè)
PitchBook-新興空間簡(jiǎn)介:碳納米管(英)-2024.1_第2頁(yè)
PitchBook-新興空間簡(jiǎn)介:碳納米管(英)-2024.1_第3頁(yè)
PitchBook-新興空間簡(jiǎn)介:碳納米管(英)-2024.1_第4頁(yè)
PitchBook-新興空間簡(jiǎn)介:碳納米管(英)-2024.1_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

EMERGING

SPACE

BRIEFCarbon

NanotubesAli

JavaheriAnalyst,

Emerging

Technologyali.javaheri@Originally

published

on

January

18,

2024pbinstitutionalresearch@Trending

companiesOverviewCarbon

nanotubes(CNTs)

arenanoscalesheets

ofgraphene

rolledintoacylindricaltube.

CNTs

havespecialfeaturesand

abilities,some

ofwhicharesimilartographitewhileotherscomefromtheirtube-like,one-dimensionalshape.

Depending

on

theirspecificstructure,

CNTs

can

behavelikemetalsor

semiconductors,

whicharekeyinelectronicdevices.MetallicCNTs,inparticular,can

conduct

electricity

over1000xbetter

thancommon

metals,

suchas

copper.Theyhaveauniquewayofconductingelectricity

thatmakesthemextremely

efficient

and

mobile,

surpassingmanystandardsemiconductors.CarbonnanotubesVCdealactivityCNTs

aremuch

strongerthansteel,and

theyconduct

heat

better

thandiamond.Theyalsohaveavery

highsurface

arearelativetotheirsize,whichmakesthemquitelightand

strong.CNTs

arealsohighlystableand

can

resistmost

chemicalreactions,

unlesstheyareexposed

tohighheat

and

oxygen.These

propertiesmakeCNTs

excellentforawiderangeofapplications,includingvariouselectronic37353534components,

sensors,

batteries,

and

materialsforprotectingagainst

electricity.12219BackgroundThe

historyofCNTs

isatapestry

ofdiscoveryand

debate.The

material’soriginscan

be

tracedback

to1952when

SovietscientistsL.V.

Radushkevichand

V.M.Lukyanovichpublishedimagesofnanometer-sizedcarbon

tubes,

thoughthisearlyworkwaslargelyoverlookeddue

tolimitedaccesstoSovietscientificresearchfor2018

2019

2020

2021

2022

2023*Deal

value($M)

Deal

countWesterncolleagues.

The

term“carbonnanotubes”wascoinedbySumioIijimain21991

when

he

observed

needle-likecarbon

structures

under

anelectron

microscope,whichhe

identifiedas

multiwalledcarbon

nanotubes.

Single-walledvariantswerediscoveredshortly

after

in1993.

The

theoreticalpredictionsand

subsequentexperimentalconfirmationsofCNTs’

uniqueelectrical

properties

fueled

asurgeinresearchand

potentialindustrialapplications,makingthemacornerstoneofSource:

PitchBook

?

Geography:

Global*AsofJanuary

9,2024nanotechnology

and

materialsscience.31:“Carbon

Nanotube,”

ScienceDirect,

Waqar

Ahmed,

et

al.,

n.d.,

accessed

January

10,

2024.2:

“ABrief

Introduction

ofCarbon

Nanotubes:

History,

Synthesis,

and

Properties,”

IOP

Publishing,

Junqi

Chen,

et

al.,

2021.3:

“Sumio

Iijima,”

International

Balzan

PrizeFoundation,

n.d.,

accessed

January

10,

2024.1Emerging

Space

Brief:

Carbon

NanotubesTechnologies

andprocessesTypes

of

carbonnanotubesSingle-walledand

multiwalledcarbon

nanotubesarethetwomaintypes

ofCNTs,withthethirdtype

beingtheless-commondouble-walledCNT.Single-walled

carbon

nanotubes(SWNTs):

These

nanotubesarecomposed

ofasinglelayerofgraphene

rolledintoacylindricalshape.

Theyareknownfortheirremarkableelectrical

properties,

whichcan

vary

frommetallictosemiconductingdepending

on

theirgeometry

and

diameter.SWNTstypicallyhavediametersrangingfromabout

1to2nanometers.

Due

totheiruniformstructure,

theyoffer

highaspectratiosand

exceptionalmechanicalstrength,

makingthemidealforapplicationsinnanoelectronics,

sensors,

and

variouscompositematerials.4Multiwalledcarbon

nanotubes(MWNTs):

Thistype

ofnanotubeconsistsofmultiplelayersofgraphene,

each

formingaconcentrictubearoundtheother,resemblingasetofnestedcylinders.

Theygenerallyhavediametersrangingfrom7to100

nanometers.

MWNTs

areknownfortheirincreasedthermaland

electricalconductivity

comparedwithSWNTs,but

theyhavefeweruniformelectronicproperties.

Their

multilayeredstructureprovidesenhanced

mechanicalstrength,whichisbeneficialforapplicationsinmaterialsreinforcement,energy

storage,andnanodevices.5Double-walled

carbon

nanotubes(DWNTs):

Thisvariantisaspecialtype

ofMWNTthathasexactlytwoconcentricgraphene

layers.Theycombinesome

properties

ofbothSWNTsand

MWNTs,offeringabalancebetween

thestrength

and

flexibilityofMWNTs

and

theelectrical

properties

ofSWNTs.DWNTs

areless

common

thantheothertwotypes

and

areparticularlyinterestingforresearchdue

totheiruniqueelectronicand

mechanicalproperties,

whichmakethemsuitableforapplicationslikenano-electromechanical

systemsand

high-strengthmaterials.6Carbonnanotube

synthesis

techniques7Chemical

vapor

deposition(CVD):

CVD

isapopularmethodforproducingCNTs,especiallyvaluedforits

precisecontrolovernanotubecharacteristicslikelength,diameter,alignment,and

purity.Thismethod,

typicallyoperatingattemperaturesbelow800

degrees

Celsius(C),

involvesthechemicalbreakdownofhydrocarbonson

asubstrate,often

inthepresenceofmetalliccatalystslikenickel,cobalt,oriron.TypesofCVD

includethermalcatalytic

chemicalvapordeposition,plasma-enhanced

CVD,and

others.

Its

advantagesareits

simplicity,lowtemperature,highpurity,and

suitabilityforlarge-scale,alignedgrowthofCNTs.Laser

ablation:

Inlaserablation,high-poweredlaservaporization(typicallyYAGtype)heats

ablock

ofpuregraphiteinafurnaceataround1,200

degrees

Cinanargonatmosphere.

Metalparticles

areoften

added

as

catalysts.

Thismethodis4:

“Single-Walled

Carbon

Nanotubes:

Structure,

Properties,

Applications,

and

Health

&

Safety,”

OCSiAl,

Marina

Filchakova

and

Vladimir

Saik,

May

12,

2021.5:

“Applications

of

Multi-Walled

Carbon

Nanotubes,”

Nanografi,

Emilia

Coldwell,

May

17,2021.6:

“Double

Walled

Carbon

Nanotubes

(DWCNTs)-

Nanografi

Blog,”

Nanografi,

Arslan

Safder,

June

21,

2019.7:“Carbon

Nanotubes:

Properties,

Synthesis,

Purification,

and

Medical

Applications,”

Nanoscale

Research

Letters,

Ali

Eatemadi,

August

13,

2014.2Emerging

Space

Brief:

Carbon

NanotubesknownforproducingSWNTswithhighpurity

and

quality.The

diameterofthenanotubesdepends

on

thelaserpower.Anotablebenefit

isits

highyieldand

lowmetallicimpurities,but

thismethodisnoteconomicallyadvantageousforlarge-scale

production

and

thenanotubesproducedmaynotbe

uniformlystraight.Carbon

arc

discharge:

Thistechniqueinvolveshightemperatures(above1,700degrees

C)

and

uses

arcdischargebetween

high-puritygraphiteelectrodes

inaheliumenvironment.Itiseffective

forcreatingfewerstructural

defects

inCNTs

andcan

producebothSWNTsand

MWNTs.The

methodboasts

highyieldsofSWNTswithanaveragediameterof1.4

nanometers.

The

mainadvantageisits

potentialforlarge-quantityproduction,

but

itoffers

littlecontrolovernanotubealignmentandrequirespurificationdue

tometalliccatalysts.Purification8The

purificationofcarbon

nanotubes(CNTs)

involvesaseries

ofstepstoremoveimpuritieslikeamorphous

carbon,

metalcatalystparticles,

and

othercarbonaceousmaterials.These

stepsincludeacidtreatment,often

usingconcentratedacidslikenitricor

hydrochloricacid,todissolvemetalparticles.

Filtrationand

centrifugationtechniquesareemployedtoseparateCNTs

fromlargergraphiteparticles

andsolvents.

Additionally,thermaloxidationisused

toeliminateamorphous

carbon,whilesizeexclusionchromatographyand

ultrasonicationaidinseparatinganddispersingnanotubes.

These

methodsvary

incomplexityand

effectiveness,

and

arecrucialforachievingthehighpurity

requiredforspecificapplicationsofCNTs.Thedevelopmentofsingle-step,nondestructive

purificationprocesses

thatmaintaintheproperties

ofCNTs

isacrucialareaforfutureresearch.ApplicationsBiological

and

biomedical

research:CNTshaveshown

promise

in

improvingmechanical

properties

ofbiodegradable

polymeric

nanocomposites

for

tissueengineering

applications

with

materials

such

as

bone,

cartilage,

muscle,

and

nervetissue.

Due

totheir

compatibility

with

biomolecules

likeDNA

and

proteins,

CNTshavebeen

utilized

in

fluorescent

and

photoacoustic

imaging,

localized

heating

for

cancertherapy,

and

biosensors

for

detecting

various

biological

substances.Composite

materials:CNTsare

incorporated

intomaterials

toenhance

theirmechanical

properties,

making

them

applicable

in

items

ranging

from

everyday

goodslikeclothes

and

sports

geartospecialized

applications

such

as

combat

jackets

andspace

elevators.

Their

high

mechanical

strength

and

conductivity

haveled

totheir

usein

manufacturing

wind

turbine

blades,

maritime

security

boats,

and

sports

goods.Microelectronics:

Carbon

nanotube

field-effect

transistors

and

other

electroniccomponents

made

from

CNTshavebeen

developed,

showing

the

potential

tooperateat

room

temperature

and

perform

digital

switching

using

a

single

electron.

They

areconsidered

alternatives

totraditional

materials

in

various

electronic

devices,

offeringimprovements

in

performance

and

size.8:

“Carbon

Nanotubes:

Properties,

Synthesis,

Purification,

and

Medical

Applications,”

Nanoscale

Research

Letters,

Ali

Eatemadi,

August

13,

2014.3Emerging

Space

Brief:

Carbon

NanotubesEnergy

storageand

solar

cells:

CNTs

havebeen

appliedinenergy

storagedeviceslikesupercapacitorsand

batteries,

improvingcapacity

and

cyclability.Insolarcells,CNTs

contributetoincreasedefficiency

throughtheirstrongUV,

visible,and

near-infraredlightabsorptioncharacteristics,and

theyarebeingexploredas

potentialreplacements

forindiumtinoxideinphotovoltaicdevices.Hydrogenstorage:Researchhasfocused

on

usingCNTs

forstoringhydrogengasathighdensitieswithoutcondensingitintoaliquid,providingapotentialsolutionforhydrogen-poweredvehiclesbyallowingstorageinits

gaseous

state,therebyincreasingefficiency.Environmental

remediation:

CNTs

havebeen

used

inwatertreatmentprocessesas

theyexhibitstrongadsorptionaffinities

forvariouscontaminants.Theyarealsobeingexploredforairpurificationas

wellas

fordevelopingcoatingsand

materialsforenvironmentalcleanupapplications.LimitationsCNTs

facesignificantlimitations,particularlyintermsofscalabilityand

costaswellas

environmentaland

healthconcerns.

Scalabilityremainsamajorissue,

asproducinghigh-qualityCNTs

on

alargescale

isexpensive,withthecostofsingle-walledCNTs

rangingfrom$75per

gram

to$300

per

gram.

Thishighcostisa9barriertotheirwidespreaduse,

especiallyinapplicationsrequiringlargequantities.Additionally,ensuringconsistentqualityduringmass

production

ischallenging;issues

likeimpurityand

structural

defects

can

significantlyaffect

theelectrical

andmechanicalproperties

ofCNTs.Environmentaland

healthconcernsalsopose

limitations.The

impact

ofCNTs

onhumanhealthand

theenvironmentisnotyetfullyunderstood,

leadingtohesitationsintheiruse,

particularlyinconsumerproducts.

Potentialtoxicityand

theeffects

oflong-termexposuretoCNTs

requirecarefulconsiderationand

management.

Thesechallengesunderscore

theneed

foradvancements

intheproduction

ofCNTs,aimedatimprovingscalabilityand

cost-effectiveness,whilealsoaddressingsafetyandenvironmentalconcerns.Recentdealactivityandmarket

outlookRecentventurecapitalactivity

intheCNTmarkethighlightsthegrowinginterestinsophisticatedenergy

storagesolutions,whichareessentialforthetransitiontocleanenergy.Omega

Power’ssignificant$18.0

millionSeries

AfundinginJuly2023,

aimedatadvancingtheirCNT-basedlithiumbattery

electrodes,

underscoresthistrend.Additionally,Nano-C’simpressive$50.0

millionfundinginJanuary2023,

cateringtoadiverserangeofapplicationsfromrenewableenergy

tosemiconductors,

reflects

thebroadpotentialofCNTs.However,2022markedanexceptionalyear,largelydue

toOCSiAl’ssubstantial$300.0

millionroundinMarch.Excludingthis,2022experiencedadipindeal

activity,parallelingtrendsinthebroader

venturecapitalmarketof2021.Yet,

2023witnessedaresurgence,indicatingafluctuatingbut

promisingtrajectory

inCNTdeal

activity

overthepast

fiveyears.9:

“Single

Walled

Carbon

Nanotubes,”

Cheap

Tubes,

n.d.,

accessed

January

10,

2024.4Emerging

Space

Brief:

Carbon

NanotubesQuantitative

perspective194552492$2.5BForadeeper

diveintothedataand

toexploreadditionalinsights,

visitthePitchBookPlatformor

request

a

free

trial.companiesdealsinvestorscapitalinvested43deals(TTM)-10.4%

YoY$1.5Mmediandealsize(TTM)$9.8Mmedianpost-moneyvaluation(TTM)-35.9%YoY$180.4Mcapitalinvested(TTM)29.5%YoY-77.7%

YoY*AsofJanuary

9,2024Top

carbonnanotubescompaniesby

totalraised*Totalraised($M)Latest

deal

value($M)CompanyLast

deal

dateDeal

typeHQ

locationYearfoundedOCSiAl$300.0$273.2$169.0$155.8$128.0$115.8$75.6$300.0$84.0N/AMarch

29,2022April

1,

2020Late-stage

VCM&ALeudelange,

Luxembourg

2009SusnShenzhen,

ChinaWoburn,

US2011NanteroCNanoAugust

2,

2021July

15,

2019M&A20012007200120182004$134.8$50.0$100.0$17.7IPOZhenjiang,

ChinaWestwood,

USSanta

Cruz,

USVantaa,

FinlandNano-CPrometheusCanatuJanuary

5,

2023September

23,

2021November

1,

2022Late-stage

VCEarly-stage

VCLate-stage

VCChangxin

ChemicalTechnology$75.3$71.1N/AJanuary

6,

2023IPODezhou,

China200919942004JEIO

Co$97.1$2.2November

18,

2022December

31,

2021IPOIncheon,

South

KoreaMerrimack,

USNanocompTechnologies$54.7GrantSource:

PitchBook

?

Geography:

Global

?

*AsofJanuary

9,20245Emerging

Space

Brief:

Carbon

NanotubesTop

carbonnanotubescompaniesby

ExitPredictoropportunityscore*OpportunityscoreSuccessprobabilityM&AprobabilityTotalraised($M)CompanyIPO

probabilityHQ

locationYearfoundedPicopack95938988878380727176%85%81%79%94%75%73%85%65%56%53%82%80%77%60%74%72%79%62%43%23%3%1%$5.8Daejeon,

South

KoreaAtlanta,

US20162011Carbice$16.5$3.6Aligned

CarbonCensSanta

Clara,

US201820142009201920182018200520152%34%1%$4.9Tel

Aviv,IsraelOCSiAl$300.0$5.0Leudelange,

LuxembourgTallinn,

EstoniaUP

CatalystMattrix

TechnologiesAwexome

RayMeijo

Nano

CarbonNovaSolix1%$8.0$14.3$7.2Gainesville,

US6%3%13%Anyang-si,

South

KoreaNagoya,

Japan68$22.7Newark,

USSource:

PitchBook

?

Geography:

Global

?

*AsofJanuary

9,2024Note:Probabilitydatabased

on

PitchBook

VCExit

Predictor

Methodology.Top

carbonnanotubescompaniesby

numberofactivepatents*CompanyActive

patent

documents

Totalraised

($M)

HQ

locationYearfounded2001Nantero431395$169.0N/AWoburn,

USRolla,

USBrewer

Science1981Hyperion

CatalysisInternational22215412898N/ACambridge,

USWestwood,

USMerrimack,

US198220012004Nano-C$128.0$54.7$5.5NanocompTechnologiesBNNT

MaterialsNewport

News,

US

2010Molecular

RebarDesign96N/AAustin,

US2012Canatu836358$75.6N/AVantaa,

FinlandCalgary,

Canada20041987C2CNTThermoheldN/ABayreuth,

Germany

2002Source:

PitchBook

?

Geography:

Global

?

*Asof

January

9,20246Emerging

Space

Brief:

Carbon

NanotubesTop

carbonnanotubesinvestors*InvestorInvestmentsHQ

locationNational

Science

FoundationUnited

States

Department

of

DefenseUS

Department

of

EnergyUnited

States

Air

Force180

Degree

Capital212012105Alexandria,

USWashington,

USWashington,

USUniversal

City,

USMontclair,

USSan

Francisco,

USWashington,

USBethesda,

USMenlo

Park,

USBoston,

USCRV5National

Aeronautics

and

Space

AdministrationNIH

Seed55Draper

Fisher

Jurvetson

ManagementGlobespan

Capital

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論