版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省南京市六區(qū)2024年中考一模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤2.函數(shù)中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣23.某班同學(xué)畢業(yè)時(shí)都將自己的照片向全班其他同學(xué)各送一張表示留念,全班共送1035張照片,如果全班有x名同學(xué),根據(jù)題意,列出方程為()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10354.如圖,在正五邊形ABCDE中,連接BE,則∠ABE的度數(shù)為()A.30° B.36° C.54° D.72°5.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.6.在,,0,1這四個(gè)數(shù)中,最小的數(shù)是A. B. C.0 D.17.如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)M是AB的中點(diǎn),若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.108.觀察下列圖形,則第n個(gè)圖形中三角形的個(gè)數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n9.計(jì)算-3-1的結(jié)果是()A.2B.-2C.4D.-410.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(
)A.30° B.35° C.40° D.50°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,直角△ABC中,AC=3,BC=4,AB=5,則內(nèi)部五個(gè)小直角三角形的周長為_____.12.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側(cè)面上,過點(diǎn)和點(diǎn)嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.13.因式分解:3a2-6a+3=________.14.如圖,李明從A點(diǎn)出發(fā)沿直線前進(jìn)5米到達(dá)B點(diǎn)后向左旋轉(zhuǎn)的角度為α,再沿直線前進(jìn)5米,到達(dá)點(diǎn)C后,又向左旋轉(zhuǎn)α角度,照這樣走下去,第一次回到出發(fā)地點(diǎn)時(shí),他共走了45米,則每次旋轉(zhuǎn)的角度α為_____.15.若分式方程有增根,則m的值為______.16.如圖,在平面直角坐標(biāo)系xOy中,△ABC可以看作是△DEF經(jīng)過若干次圖形的變化(平移、旋轉(zhuǎn)、軸對稱)得到的,寫出一種由△DEF得到△ABC的過程____.17.分解因式:4a2﹣1=_____.三、解答題(共7小題,滿分69分)18.(10分)解不等式組并在數(shù)軸上表示解集.19.(5分)現(xiàn)有兩個(gè)紙箱,每個(gè)紙箱內(nèi)各裝有4個(gè)材質(zhì)、大小都相同的乒乓球,其中一個(gè)紙箱內(nèi)4個(gè)小球上分別寫有1、2、3、4這4個(gè)數(shù),另一個(gè)紙箱內(nèi)4個(gè)小球上分別寫有5、6、7、8這4個(gè)數(shù),甲、乙兩人商定了一個(gè)游戲,規(guī)則是:從這兩個(gè)紙箱中各隨機(jī)摸出一個(gè)小球,然后把兩個(gè)小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得1分,若得到積是3的倍數(shù),則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進(jìn)行下一次游戲,最后得分高者勝出.。(1)請你通過列表(或樹狀圖)分別計(jì)算乘積是2的倍數(shù)和3的倍數(shù)的概率;(2)你認(rèn)為這個(gè)游戲公平嗎?為什么?若你認(rèn)為不公平,請你修改得分規(guī)則,使游戲?qū)﹄p方公平.20.(8分)綜合與實(shí)踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).21.(10分)計(jì)算:÷(﹣1)22.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(-3,m+8),B(n,-6)兩點(diǎn).求一次函數(shù)與反比例函數(shù)的解析式;求△AOB的面積.23.(12分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點(diǎn),ED的延長線與CB的延長線相交于點(diǎn)F.(1)求證:DF是BF和CF的比例中項(xiàng);(2)在AB上取一點(diǎn)G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.24.(14分)先化簡,再求值:(﹣1)÷,其中x=1.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點(diǎn)定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補(bǔ)角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯(cuò)誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個(gè)三角形相似,利用相似三角形對應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點(diǎn)M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點(diǎn)M作GH∥AB,過點(diǎn)O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點(diǎn),
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯(cuò)誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點(diǎn)M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點(diǎn)M作GH∥AB,過點(diǎn)O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個(gè).故選:D【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強(qiáng),難度較大,仔細(xì)分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.2、B【解析】要使有意義,所以x+1≥0且x+1≠0,
解得x>-1.
故選B.3、B【解析】試題分析:如果全班有x名同學(xué),那么每名同學(xué)要送出(x-1)張,共有x名學(xué)生,那么總共送的張數(shù)應(yīng)該是x(x-1)張,即可列出方程.∵全班有x名同學(xué),∴每名同學(xué)要送出(x-1)張;又∵是互送照片,∴總共送的張數(shù)應(yīng)該是x(x-1)=1.故選B考點(diǎn):由實(shí)際問題抽象出一元二次方程.4、B【解析】
在等腰三角形△ABE中,求出∠A的度數(shù)即可解決問題.【詳解】解:在正五邊形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故選B.【點(diǎn)睛】本題主要考查多邊形內(nèi)角與外角的知識點(diǎn),解答本題的關(guān)鍵是求出正五邊形的內(nèi)角,此題基礎(chǔ)題,比較簡單.5、D【解析】∵⊙O的半徑OD⊥弦AB于點(diǎn)C,AB=8,∴AC=AB=1.設(shè)⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.6、A【解析】【分析】根據(jù)正數(shù)大于零,零大于負(fù)數(shù),正數(shù)大于一切負(fù)數(shù),即可得答案.【詳解】由正數(shù)大于零,零大于負(fù)數(shù),得,最小的數(shù)是,故選A.【點(diǎn)睛】本題考查了有理數(shù)比較大小,利用好“正數(shù)大于零,零大于負(fù)數(shù),兩個(gè)負(fù)數(shù)絕對值大的反而小”是解題關(guān)鍵.7、D【解析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點(diǎn)O,
∴∠BAD=90°,點(diǎn)O是線段BD的中點(diǎn),
∵點(diǎn)M是AB的中點(diǎn),
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.【點(diǎn)睛】本題考查了三角形中位線定理和矩形的性質(zhì),利用三角形中位線定理求得AD的長度是解題的關(guān)鍵.8、D【解析】試題分析:由已知的三個(gè)圖可得到一般的規(guī)律,即第n個(gè)圖形中三角形的個(gè)數(shù)是4n,根據(jù)一般規(guī)律解題即可.解:根據(jù)給出的3個(gè)圖形可以知道:第1個(gè)圖形中三角形的個(gè)數(shù)是4,第2個(gè)圖形中三角形的個(gè)數(shù)是8,第3個(gè)圖形中三角形的個(gè)數(shù)是12,從而得出一般的規(guī)律,第n個(gè)圖形中三角形的個(gè)數(shù)是4n.故選D.考點(diǎn):規(guī)律型:圖形的變化類.9、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.10、C【解析】試題分析:已知m∥n,根據(jù)平行線的性質(zhì)可得∠3=∠1=70°.又因∠3是△ABD的一個(gè)外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點(diǎn):平行線的性質(zhì).二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】分析:由圖形可知,內(nèi)部小三角形直角邊是大三角形直角邊平移得到的,故內(nèi)部五個(gè)小直角三角形的周長為大直角三角形的周長.詳解:由圖形可以看出:內(nèi)部小三角形直角邊是大三角形直角邊平移得到的,故內(nèi)部五個(gè)小直角三角形的周長為AC+BC+AB=1.故答案為1.點(diǎn)睛:本題主要考查了平移的性質(zhì),需要注意的是:平移前后圖形的大小、形狀都不改變.12、【解析】
要求絲線的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長時(shí),根據(jù)勾股定理計(jì)算即可.【詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.
∵圓柱底面的周長為4dm,圓柱高為2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴這圈金屬絲的周長最小為2AC=4dm.
故答案為:4dm【點(diǎn)睛】本題考查了平面展開-最短路徑問題,圓柱的側(cè)面展開圖是一個(gè)矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側(cè)面展開成矩形,“化曲面為平面”是解題的關(guān)鍵.13、3(a-1)2【解析】
先提公因式,再套用完全平方公式.【詳解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【點(diǎn)睛】考點(diǎn):提公因式法與公式法的綜合運(yùn)用.14、.【解析】
根據(jù)共走了45米,每次前進(jìn)5米且左轉(zhuǎn)的角度相同,則可計(jì)算出該正多邊形的邊數(shù),再根據(jù)外角和計(jì)算左轉(zhuǎn)的角度.【詳解】連續(xù)左轉(zhuǎn)后形成的正多邊形邊數(shù)為:,則左轉(zhuǎn)的角度是.故答案是:.【點(diǎn)睛】本題考查了多邊形的外角計(jì)算,正確理解多邊形的外角和是360°是關(guān)鍵.15、-1【解析】
增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘(x-1),得x-1(x-1)=-m∵原方程增根為x=1,∴把x=1代入整式方程,得m=-1,故答案為:-1.【點(diǎn)睛】本題考查了分式方程的增根,增根確定后可按如下步驟進(jìn)行:化分式方程為整式方程;把增根代入整式方程即可求得相關(guān)字母的值.16、先以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì),平移的性質(zhì)即可得到由△DEF得到△ABC的過程.【詳解】由題可得,由△DEF得到△ABC的過程為:先以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.(答案不唯一)故答案為:先以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.【點(diǎn)睛】本題考查了坐標(biāo)與圖形變化﹣旋轉(zhuǎn),平移,對稱,解題時(shí)需要注意:平移的距離等于對應(yīng)點(diǎn)連線的長度,對稱軸為對應(yīng)點(diǎn)連線的垂直平分線,旋轉(zhuǎn)角為對應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線的夾角的大小.17、(2a+1)(2a﹣1)【解析】
有兩項(xiàng),都能寫成完全平方數(shù)的形式,并且符號相反,可用平方差公式展開.【詳解】4a2﹣1=(2a+1)(2a﹣1).故答案為:(2a+1)(2a-1).【點(diǎn)睛】此題考查多項(xiàng)式因式分解,根據(jù)多項(xiàng)式的特點(diǎn)選擇適合的分解方法是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、﹣<x≤0,不等式組的解集表示在數(shù)軸上見解析.【解析】
先求出每一個(gè)不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解不等式2x+1>0,得:x>﹣,解不等式,得:x≤0,則不等式組的解集為﹣<x≤0,將不等式組的解集表示在數(shù)軸上如下:【點(diǎn)睛】本題考查了解一元一次不等式組,解題的關(guān)鍵是掌握“同大取大;同小取??;大小小大中間找;大大小小找不到”.19、(1)34(2)游戲不公平,修改得分規(guī)則為:把兩個(gè)小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得7分,若得到的積是3的倍數(shù),則乙得12分【解析】試題分析:(1)列表如下:共有16種情況,且每種情況出現(xiàn)的可能性相同,其中,乘積是2的倍數(shù)的有12種,乘積是3的倍數(shù)的有7種.∴P(兩數(shù)乘積是2的倍數(shù))=P(兩數(shù)乘積是3的倍數(shù))=(2)游戲不公平,修改得分規(guī)則為:把兩個(gè)小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得7分,若得到的積是3的倍數(shù),則乙得12分考點(diǎn):概率的計(jì)算點(diǎn)評:題目難度不大,考查基本概率的計(jì)算,屬于基礎(chǔ)題。本題主要是第二問有點(diǎn)難度,對游戲規(guī)則的確定,需要一概率為基礎(chǔ)。20、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】
(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點(diǎn)F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點(diǎn)D與點(diǎn)F關(guān)于AE對稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點(diǎn)睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).21、【解析】
根據(jù)分式的混合運(yùn)算法則把原式進(jìn)行化簡即可.【詳解】原式=÷(﹣)=÷=?=.【點(diǎn)睛】本題考查的是分式的混合運(yùn)算,熟知分式的混合運(yùn)算的法則是解答此題的關(guān)鍵.22、(1)y=-,y=-2x-1(2)1【解析】試題分析:(1)將點(diǎn)A坐標(biāo)代入反比例函數(shù)求出m的值,從而得到點(diǎn)A的坐標(biāo)以及反比例函數(shù)解析式,再將點(diǎn)B坐標(biāo)代入反比例函數(shù)求出n的值,從而得到點(diǎn)B的坐標(biāo),然
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度木工工藝研發(fā)與創(chuàng)新資助合同
- 2025年門禁產(chǎn)品銷售與客戶定制化解決方案合同范本3篇
- 2025年度農(nóng)藥殘留檢測技術(shù)服務(wù)合同書2篇
- 2025年度噴泉景區(qū)旅游推廣及市場營銷合同
- 艾滋病病毒王利沙HIV講解
- 2025年度宅基地使用權(quán)及房產(chǎn)繼承合同
- 2025年度旅游行業(yè)導(dǎo)游及服務(wù)人員派遣合同2篇
- 二零二五年度雛雞養(yǎng)殖與休閑農(nóng)業(yè)融合發(fā)展合同4篇
- 2025版民間抵押資產(chǎn)處置合同樣本3篇
- 2025年建筑行業(yè)自動(dòng)化的機(jī)遇與挑戰(zhàn)
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年參考題庫含答案解析
- 國旗班指揮刀訓(xùn)練動(dòng)作要領(lǐng)
- 2024年國家工作人員學(xué)法用法考試題庫及參考答案
- 國家公務(wù)員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 2021-2022學(xué)年遼寧省重點(diǎn)高中協(xié)作校高一上學(xué)期期末語文試題
- 同等學(xué)力英語申碩考試詞匯(第六版大綱)電子版
- 人教版五年級上冊遞等式計(jì)算100道及答案
- 墓地個(gè)人協(xié)議合同模板
- 2024年部編版初中語文各年級教師用書七年級(上冊)
- 2024年新課標(biāo)全國Ⅰ卷語文高考真題試卷(含答案)
評論
0/150
提交評論