山東省青島市膠州市重點名校2024年中考猜題數(shù)學試卷含解析_第1頁
山東省青島市膠州市重點名校2024年中考猜題數(shù)學試卷含解析_第2頁
山東省青島市膠州市重點名校2024年中考猜題數(shù)學試卷含解析_第3頁
山東省青島市膠州市重點名校2024年中考猜題數(shù)學試卷含解析_第4頁
山東省青島市膠州市重點名校2024年中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省青島市膠州市重點名校2024年中考猜題數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某廣場上有一個形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯誤的是()A.紅花、綠花種植面積一定相等B.紫花、橙花種植面積一定相等C.紅花、藍花種植面積一定相等D.藍花、黃花種植面積一定相等2.超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經(jīng)兩次降價后售價為90元,則得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=903.扇形的半徑為30cm,圓心角為120°,用它做成一個圓錐的側(cè)面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm4.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.5.如圖,在△ABC中,點D在AB邊上,DE∥BC,與邊AC交于點E,連結(jié)BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S26.如圖,已知A、B兩點的坐標分別為(-2,0)、(0,1),⊙C的圓心坐標為(0,-1),半徑為1.若D是⊙C上的一個動點,射線AD與y軸交于點E,則△ABE面積的最大值是A.3 B. C. D.47.在數(shù)軸上到原點距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道8.如圖1,將三角板的直角頂點放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數(shù)為A.80° B.50° C.30° D.20°9.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數(shù)據(jù)35578用科學記數(shù)法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×10510.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.11.如圖,能判定EB∥AC的條件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC12.已知點A、B、C是直徑為6cm的⊙O上的點,且AB=3cm,AC=3cm,則∠BAC的度數(shù)為()A.15°

B.75°或15°

C.105°或15°

D.75°或105°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(-6,4),則△AOC的面積為.14.在直角坐標平面內(nèi)有一點A(3,4),點A與原點O的連線與x軸的正半軸夾角為α,那么角α的余弦值是_____.15.如圖,經(jīng)過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.16.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現(xiàn)將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.17.已知x3=y18.計算:=_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某初中學校舉行毛筆書法大賽,對各年級同學的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:請將條形統(tǒng)計圖補全;獲得一等獎的同學中有來自七年級,有來自八年級,其他同學均來自九年級,現(xiàn)準備從獲得一等獎的同學中任選兩人參加市內(nèi)毛筆書法大賽,請通過列表或畫樹狀圖求所選出的兩人中既有七年級又有九年級同學的概率.20.(6分)如圖,分別與相切于點,點在上,且,,垂足為.求證:;若的半徑,,求的長21.(6分)高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災,消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)22.(8分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.23.(8分)為了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.

(1)參加音樂類活動的學生人數(shù)為

人,參加球類活動的人數(shù)的百分比為

(2)請把圖2(條形統(tǒng)計圖)補充完整;

(3)該校學生共600人,則參加棋類活動的人數(shù)約為.

(4)該班參加舞蹈類活動的4位同學中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準備從中選取兩名同學組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.

24.(10分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求一次函數(shù)y=kx+b和y=的表達式;(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標;(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)25.(10分)計算:12+(13)﹣2﹣|1﹣3|﹣(π+1)026.(12分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點,AC∥OP,M是直徑AB上的動點,A與直線CM上的點連線距離的最小值為d,B與直線CM上的點連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設(shè)OP=AC,求∠CPO的正弦值;(3)設(shè)AC=9,AB=15,求d+f的取值范圍.27.(12分)拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.(1)如圖1,若A(-1,0),B(3,0),①求拋物線的解析式;②P為拋物線上一點,連接AC,PC,若∠PCO=3∠ACO,求點P的橫坐標;(2)如圖2,D為x軸下方拋物線上一點,連DA,DB,若∠BDA+2∠BAD=90°,求點D的縱坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

圖中,線段GH和EF將大平行四邊形ABCD分割成了四個小平行四邊形,平行四邊形的對角線平分該平行四邊形的面積,據(jù)此進行解答即可.【詳解】解:由已知得題圖中幾個四邊形均是平行四邊形.又因為平行四邊形的一條對角線將平行四邊形分成兩個全等的三角形,即面積相等,故紅花和綠花種植面積一樣大,藍花和黃花種植面積一樣大,紫花和橙花種植面積一樣大.故選擇C.【點睛】本題考查了平行四邊形的定義以及性質(zhì),知道對角線平分平行四邊形是解題關(guān)鍵.2、A【解析】試題分析:設(shè)某種書包原價每個x元,根據(jù)題意列出方程解答即可.設(shè)某種書包原價每個x元,可得:0.8x﹣10=90考點:由實際問題抽象出一元一次方程.3、A【解析】試題解析:扇形的弧長為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點:圓錐的計算.4、A【解析】試題解析:試題解析:根據(jù)軸對稱圖形和中心對稱圖形的概念進行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn),旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉(zhuǎn)點,就叫做對稱中心.5、D【解析】

根據(jù)題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時,,此時3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項A不符合題意,選項B不符合題意.若1AD<AB,即時,,此時3S1<S1+S△BDE<1S1,故選項C不符合題意,選項D符合題意.故選D.【點睛】考查了相似三角形的判定與性質(zhì),三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.6、B【解析】試題分析:解:當射線AD與⊙C相切時,△ABE面積的最大.連接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,連接CD,設(shè)EF=x,∴DE2=EF?OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故選B.考點:1.切線的性質(zhì);2.三角形的面積.7、C【解析】

根據(jù)數(shù)軸上到原點距離等于3的數(shù)為絕對值是3的數(shù)即可求解.【詳解】絕對值為3的數(shù)有3,-3.故答案為C.【點睛】本題考查數(shù)軸上距離的意義,解題的關(guān)鍵是知道數(shù)軸上的點到原點的距離為絕對值.8、D【解析】試題分析:根據(jù)平行線的性質(zhì),得∠4=∠2=50°,再根據(jù)三角形的外角的性質(zhì)∠3=∠4-∠1=50°-30°=20°.故答案選D.考點:平行線的性質(zhì);三角形的外角的性質(zhì).9、B【解析】

科學計數(shù)法是a×,且,n為原數(shù)的整數(shù)位數(shù)減一.【詳解】解:35578=3.5578×,故選B.【點睛】本題主要考查的是利用科學計數(shù)法表示較大的數(shù),屬于基礎(chǔ)題型.理解科學計數(shù)法的表示方法是解題的關(guān)鍵.10、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內(nèi)切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.11、C【解析】

在復雜的圖形中具有相等關(guān)系的兩角首先要判斷它們是否是同位角或內(nèi)錯角,被判斷平行的兩直線是否由“三線八角”而產(chǎn)生的被截直線.【詳解】A、∠C=∠ABE不能判斷出EB∥AC,故本選項錯誤;B、∠A=∠EBD不能判斷出EB∥AC,故本選項錯誤;C、∠A=∠ABE,根據(jù)內(nèi)錯角相等,兩直線平行,可以得出EB∥AC,故本選項正確;D、∠C=∠ABC只能判斷出AB=AC,不能判斷出EB∥AC,故本選項錯誤.故選C.【點睛】本題考查了平行線的判定,正確識別“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關(guān)鍵,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補,才能推出兩被截直線平行.12、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點睛:本題考查的是圓周角定理和銳角三角函數(shù)的知識,掌握直徑所對的圓周角是直徑和熟記特殊角的三角函數(shù)值是解題的關(guān)鍵,注意分情況討論思想的運用.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】解:∵OA的中點是D,點A的坐標為(﹣6,4),∴D(﹣1,2),∵雙曲線y=經(jīng)過點D,∴k=﹣1×2=﹣6,∴△BOC的面積=|k|=1.又∵△AOB的面積=×6×4=12,∴△AOC的面積=△AOB的面積﹣△BOC的面積=12﹣1=2.14、【解析】

根據(jù)勾股定理求出OA的長度,根據(jù)余弦等于鄰邊比斜邊求解即可.【詳解】∵點A坐標為(3,4),∴OA==5,∴cosα=,故答案為【點睛】本題主要考查銳角三角函數(shù)的概念,在直角三角形中,在直角三角形中,正弦等于對邊比斜邊;余弦等于鄰邊比斜邊;正切等于對邊比鄰邊,熟練掌握三角函數(shù)的概念是解題關(guān)鍵.15、【解析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.16、【解析】

判斷出即是中心對稱,又是軸對稱圖形的個數(shù),然后結(jié)合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.17、7【解析】

由x3=y4可知xy【詳解】解:∵x3∴xy∴原式=xy【點睛】本題考查了分式的化簡求值.18、3【解析】

先把化成,然后再合并同類二次根式即可得解.【詳解】原式=2.故答案為【點睛】本題考查了二次根式的計算:先把各二次根式化為最簡二次根式,再進行然后合并同類二次根式.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)答案見解析;(2).【解析】【分析】(1)根據(jù)參與獎有10人,占比25%可求得獲獎的總?cè)藬?shù),用總?cè)藬?shù)減去二等獎、三等獎、鼓勵獎、參與獎的人數(shù)可求得一等獎的人數(shù),據(jù)此補全條形圖即可;(2)根據(jù)題意分別求出七年級、八年級、九年級獲得一等獎的人數(shù),然后通過列表或畫樹狀圖法進行求解即可得.【詳解】(1)10÷25%=40(人),獲一等獎人數(shù):40-8-6-12-10=4(人),補全條形圖如圖所示:(2)七年級獲一等獎人數(shù):4×=1(人),八年級獲一等獎人數(shù):4×=1(人),∴九年級獲一等獎人數(shù):4-1-1=2(人),七年級獲一等獎的同學用M表示,八年級獲一等獎的同學用N表示,九年級獲一等獎的同學用P1、P2表示,樹狀圖如下:共有12種等可能結(jié)果,其中獲得一等獎的既有七年級又有九年級人數(shù)的結(jié)果有4種,則所選出的兩人中既有七年級又有九年級同學的概率P=.【點評】此題考查了統(tǒng)計與概率綜合,理解扇形統(tǒng)計圖與條形統(tǒng)計圖的意義及列表法或樹狀圖法是解題關(guān)鍵.20、(1)見解析(2)5【解析】

解:(1)證明:如圖,連接,則.∵,∴.∵,∴四邊形是平行四邊形.∴.(2)連接,則.∵,,,∴,.∴.∴.設(shè),則.在中,有.∴.即.21、不需要改道行駛【解析】

解:過點A作AH⊥CF交CF于點H,由圖可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防車不需要改道行駛.過點A作AH⊥CF交CF于點H,應用三角函數(shù)求出AH的長,大于100米,不需要改道行駛,不大于100米,需要改道行駛.22、見解析【解析】

根據(jù)CE∥DF,可得∠ECA=∠FDB,再利用SAS證明△ACE≌△FDB,得出對應邊相等即可.【詳解】解:∵CE∥DF

∴∠ECA=∠FDB,在△ECA和△FDB中∴△ECA≌△FDB,

∴AE=FB.【點睛】本題主要考查全等三角形的判定與性質(zhì)和平行線的性質(zhì);熟練掌握平行線的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.23、(1)7、30%;(2)補圖見解析;(3)105人;(3)

【解析】試題分析:(1)先根據(jù)繪畫類人數(shù)及其百分比求得總?cè)藬?shù),繼而可得答案;(2)根據(jù)(1)中所求數(shù)據(jù)即可補全條形圖;(3)總?cè)藬?shù)乘以棋類活動的百分比可得;(4)利用樹狀圖法列舉出所有可能的結(jié)果,然后利用概率公式即可求解.試題解析:解:(1)本次調(diào)查的總?cè)藬?shù)為10÷25%=40(人),∴參加音樂類活動的學生人數(shù)為40×17.5%=7人,參加球類活動的人數(shù)的百分比為×100%=30%,故答案為7,30%;(2)補全條形圖如下:(3)該校學生共600人,則參加棋類活動的人數(shù)約為600×=105,故答案為105;(4)畫樹狀圖如下:共有12種情況,選中一男一女的有6種,則P(選中一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?4、(1),;(2)點C的坐標為或;(3)2.【解析】試題分析:(1)由點A的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出a值,從而得出反比例函數(shù)解析式;由勾股定理得出OA的長度從而得出點B的坐標,由點A、B的坐標利用待定系數(shù)法即可求出直線AB的解析式;

(2)設(shè)點C的坐標為(m,0),令直線AB與x軸的交點為D,根據(jù)三角形的面積公式結(jié)合△ABC的面積是8,可得出關(guān)于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點C的坐標;

(3)設(shè)點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,根據(jù)反比例函數(shù)解析式以及平移的性質(zhì)找出點E、F、M、N的坐標,根據(jù)EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據(jù)平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據(jù)平移的性質(zhì)即可得出C1平移至C2處所掃過的面積正好為S.試題解析:(1)∵點A(4,3)在反比例函數(shù)y=的圖象上,∴a=4×3=12,∴反比例函數(shù)解析式為y=;∵OA==1,OA=OB,點B在y軸負半軸上,∴點B(0,﹣1).把點A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數(shù)的解析式為y=2x﹣1.(2)設(shè)點C的坐標為(m,0),令直線AB與x軸的交點為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0),∴S△ABC=CD?(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故當△ABC的面積是8時,點C的坐標為(,0)或(,0).(3)設(shè)點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,如圖2所示.令y=中x=1,則y=12,∴E(1,12),;令y=中x=4,則y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四邊形EMNF為平行四邊形,∴S=EM?(yE﹣yF)=3×(12﹣3)=2.C1平移至C2處所掃過的面積正好為平行四邊形EMNF的面積.故答案為2.【點睛】運用了反比例函數(shù)圖象上點的坐標特征、待定系數(shù)法求函數(shù)解析式、三角形的面積以及平行四邊形的面積,解題的關(guān)鍵是:(1)利用待定系數(shù)法求出函數(shù)解析式;(2)找出關(guān)于m的含絕對值符號的一元一次方程;(3)求出平行四邊形EMNF的面積.本題屬于中檔題,難度不小,解決(3)時,巧妙的借助平行四邊的面積公式求出C1平移至C2處所掃過的面積,此處要注意數(shù)形結(jié)合的重要性.25、3【解析】

先算負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式的化簡、絕對值,再相加即可求解;【詳解】解:原式=23=23=【點睛】考查實數(shù)的混合運算,分別掌握負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式的化簡、絕對值的計算法則是解題的關(guān)鍵.26、(1)詳見解析;(2);(3)【解析】

(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠A=∠OCA,由平行線的性質(zhì)得到∠A=∠BOP,∠ACO=∠COP,等量代換得到∠COP=∠BOP,由切線的性質(zhì)得到∠OBP=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;

(2)過O作OD⊥AC于D,根據(jù)相似三角形的性質(zhì)得到CD?OP=OC2,根據(jù)已知條件得到,由三角函數(shù)的定義即可得到結(jié)論;

(3)連接BC,根據(jù)勾股定理得到BC==12,當M與A重合時,得到d+f=12,當M與B重合時,得到d+f=9,于是得到結(jié)論.【詳解】(1)連接OC,

∵OA=OC,

∴∠A=∠OCA,

∵AC∥OP,

∴∠A=∠BOP,∠ACO=∠COP,

∴∠COP=∠BOP,

∵PB是⊙O的切線,AB是⊙O的直徑,

∴∠OBP=90°,

在△POC與△POB中,,

∴△COP≌△BOP,

∴∠OCP=∠OBP=90°,

∴PC是⊙O的切線;

(2)過O作OD⊥AC于D,

∴∠ODC=∠OCP=90°,CD=AC,

∵∠DCO=∠COP,

∴△ODC∽△PCO,

∴,

∴CD?OP=OC2,

∵OP=AC,

∴AC=OP,

∴CD=OP,

∴OP?OP=OC2

∴,

∴sin∠CPO=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論