2024屆北京東城55中高三第三次測評數(shù)學試卷含解析_第1頁
2024屆北京東城55中高三第三次測評數(shù)學試卷含解析_第2頁
2024屆北京東城55中高三第三次測評數(shù)學試卷含解析_第3頁
2024屆北京東城55中高三第三次測評數(shù)學試卷含解析_第4頁
2024屆北京東城55中高三第三次測評數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆北京東城55中高三第三次測評數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.2.已知函數(shù),,若對任意的,存在實數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.53.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.4.當時,函數(shù)的圖象大致是()A. B.C. D.5.已知函數(shù)的值域為,函數(shù),則的圖象的對稱中心為()A. B.C. D.6.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.7.設函數(shù)滿足,則的圖像可能是A. B.C. D.8.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.9.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.10.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.18011.《九章算術》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數(shù)進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數(shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.176412.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則__________.14.一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.15.如圖,某市一學校位于該市火車站北偏東方向,且,已知是經(jīng)過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學校道路,其中,,以學校為圓心,半徑為的四分之一圓弧分別與相切于點.當?shù)卣顿Y開發(fā)區(qū)域發(fā)展經(jīng)濟,其中分別在公路上,且與圓弧相切,設,的面積為.(1)求關于的函數(shù)解析式;(2)當為何值時,面積為最小,政府投資最低?16.函數(shù)的最小正周期是_______________,單調遞增區(qū)間是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.18.(12分)設為實數(shù),已知函數(shù),.(1)當時,求函數(shù)的單調區(qū)間:(2)設為實數(shù),若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個相異的零點,求的取值范圍.19.(12分)已知函數(shù).(1)設,若存在兩個極值點,,且,求證:;(2)設,在不單調,且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).20.(12分)已知函數(shù).(1)討論的單調性;(2)若恒成立,求實數(shù)的取值范圍.21.(12分)第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關法規(guī)宣傳普及的關系,對某試點社區(qū)抽取戶居民進行調查,得到如下的列聯(lián)表.分類意識強分類意識弱合計試點后試點前合計已知在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為居民分類意識的強弱與政府宣傳普及工作有關?說明你的理由;(2)已知在試點前分類意識強的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點前分類意識強的戶居民中,隨機選出戶進行自覺垃圾分類年限的調查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學期望.參考公式:,其中.下面的臨界值表僅供參考22.(10分)設函數(shù)f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實數(shù)a的值;(2)證明:f(x).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.2、A【解析】

根據(jù)條件將問題轉化為,對于恒成立,然后構造函數(shù),然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數(shù)研究函數(shù)的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.3、D【解析】

根據(jù)三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側面的高為,所以側面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎題.4、B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調性,導數(shù)的應用以及數(shù)學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.5、B【解析】

由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數(shù)的圖像及性質,考查函數(shù)的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為06、D【解析】

建立平面直角坐標系,將問題轉化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據(jù)軌跡方程構造不等關系求得最值.7、B【解析】根據(jù)題意,確定函數(shù)的性質,再判斷哪一個圖像具有這些性質.由得是偶函數(shù),所以函數(shù)的圖象關于軸對稱,可知B,D符合;由得是周期為2的周期函數(shù),選項D的圖像的最小正周期是4,不符合,選項B的圖像的最小正周期是2,符合,故選B.8、D【解析】

由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.9、B【解析】

根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點,∴,.∴.故選:.【點睛】本題考查了三角函數(shù)定義,和差公式,意在考查學生的計算能力.10、A【解析】

因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎題.11、A【解析】

根據(jù)題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點睛】本小題主要考查合情推理,考查中國古代數(shù)學文化,屬于基礎題.12、A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數(shù)基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎題.14、11【解析】

將圖形中左側的兩列瓷磚的形狀先確定,再由此進行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進行分類,在其中會有相同元素的排列問題,需用到“縮倍法”.采用分類計數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:,3個,2個:,1個,4個:,(2)左側兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.15、(1);(2).【解析】

(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,,進而表示直線的方程,由直線與圓相切構建關系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進而對原面積的函數(shù)用含t的表達式換元,再令進行換元,并構建新的函數(shù),由二次函數(shù)性質即可求得最小值.【詳解】解:(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調遞減.所以,當,即時,取得最大值,取最小值.答:當時,面積為最小,政府投資最低.【點睛】本題考查三角函數(shù)的實際應用,應優(yōu)先結合實際建立合適的數(shù)學模型,再按模型求最值,屬于難題.16、,,【解析】

化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調遞增區(qū)間是,,.故答案為:,,,.【點睛】本題主要考查了二倍角的公式的應用,余弦函數(shù)的圖象與性質,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、.【解析】

根據(jù)特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎題.18、(1)函數(shù)單調減區(qū)間為;單調增區(qū)間為.(2)(3)【解析】

(1)據(jù)導數(shù)和函數(shù)單調性的關系即可求出;(2)分離參數(shù),可得對任意的及任意的恒成立,構造函數(shù),利用導數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導,再分類討論,根據(jù)導數(shù)和函數(shù)單調性以及最值得關系即可求出的范圍【詳解】解:(1)當時,因為,當時,;當時,.所以函數(shù)單調減區(qū)間為;單調增區(qū)間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設,,則,所以函數(shù)在上單調遞減,在上單調遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數(shù)在上單調遞增,所以函數(shù)至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當時,,所以,所以,所以當時,函數(shù)的值域為.所以,存在,使得,即,①且當時,,所以函數(shù)在上單調遞增,在上單調遞減.因為函數(shù)有兩個零點,,所以.②設,,則,所以函數(shù)在單調遞增,由于,所以當時,.所以,②式中的,又由①式,得.由第(1)小題可知,當時,函數(shù)在上單調遞減,所以,即.當時,(ⅰ)由于,所以得,又因為,且函數(shù)在上單調遞減,函數(shù)的圖象在上不間斷,所以函數(shù)在上恰有一個零點;(ⅱ)由于,令,設,,由于時,,,所以設,即.由①式,得,當時,,且,同理可得函數(shù)在上也恰有一個零點.綜上,.【點睛】本題考查含參數(shù)的導數(shù)的單調性,利用導數(shù)求不等式恒成立問題,以及考查函數(shù)零點問題,考查學生的計算能力,是綜合性較強的題.19、(1)證明見解析;(2).【解析】

(1)先求出,又由可判斷出在上單調遞減,故,令,記,利用導數(shù)求出的最小值即可;(2)由在上不單調轉化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調遞減,令,記,則在上單調遞增;,在上單調遞增;,(2),,在上不單調,在上有正有負,在上有解,,,恒成立,記,則,記,,在上單調增,在上單調減.于是知(i)當即時,恒成立,在上單調增,,,.(ii)當時,,故不滿足題意.綜上所述,【點睛】本題主要考查了導數(shù)的綜合應用,考查了分類討論,轉化與化歸的思想,考查了學生的運算求解能力.20、(1)當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增;(2).【解析】

(1)對a分三種情況討論求出函數(shù)的單調性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當時,,在上單調遞增;當時,,,,,∴在上單調遞減,在上單調遞增;當時,,,,,∴在上單調遞減,在上單調遞增.綜上:當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增.(2)由(1)可知:當時,,∴成立.當時,,,∴.當時,,,∴,即.綜上.【點睛】本題主要考查利用導數(shù)研究函數(shù)的單調性和不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.21、(1)有的把握認為居民分類意識強與政府宣傳普及工作有很大關系.見解析(2)分布列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論