安徽省宿州市時村中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
安徽省宿州市時村中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
安徽省宿州市時村中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
安徽省宿州市時村中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
安徽省宿州市時村中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省宿州市時村中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某個密碼鎖的密碼由三個數(shù)字組成,每個數(shù)字都是0-9這十個數(shù)字中的一個,只有當(dāng)三個數(shù)字與所設(shè)定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設(shè)密碼的最后那個數(shù)字,那么一次就能打開該密碼的概率是()A.110 B.19 C.12.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±203.若△÷,則“△”可能是()A. B. C. D.4.如圖,在正五邊形ABCDE中,連接BE,則∠ABE的度數(shù)為()A.30° B.36° C.54° D.72°5.的算術(shù)平方根為()A. B. C. D.6.若一組數(shù)據(jù)2,3,4,5,x的平均數(shù)與中位數(shù)相等,則實數(shù)x的值不可能是()A.6 B.3.5 C.2.5 D.17.一個正多邊形的內(nèi)角和為900°,那么從一點引對角線的條數(shù)是()A.3 B.4 C.5 D.68.中國幅員遼闊,陸地面積約為960萬平方公里,“960萬”用科學(xué)記數(shù)法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1029.到三角形三個頂點的距離相等的點是三角形()的交點.A.三個內(nèi)角平分線 B.三邊垂直平分線C.三條中線 D.三條高10.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣511.如圖,小明要測量河內(nèi)小島B到河邊公路l的距離,在A點測得,在C點測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.12.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.的系數(shù)是_____,次數(shù)是_____.14.如圖,A、B、C是⊙O上的三點,若∠C=30°,OA=3,則弧AB的長為______.(結(jié)果保留π)15.因式分解:________.16.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.17.觀光塔是濰坊市區(qū)的標(biāo)志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是______m.18.計算:|﹣3|+(﹣1)2=.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進(jìn)行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.甲、乙兩工程隊每天能改造道路的長度分別是多少米?若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?20.(6分)從化市某中學(xué)初三(1)班數(shù)學(xué)興趣小組為了解全校800名初三學(xué)生的“初中畢業(yè)選擇升學(xué)和就業(yè)”情況,特對本班50名同學(xué)們進(jìn)行調(diào)查,根據(jù)全班同學(xué)提出的3個主要觀點:A高中,B中技,C就業(yè),進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項觀點);并制成了扇形統(tǒng)計圖(如圖).請回答以下問題:(1)該班學(xué)生選擇觀點的人數(shù)最多,共有人,在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是度.(2)利用樣本估計該校初三學(xué)生選擇“中技”觀點的人數(shù).(3)已知該班只有2位女同學(xué)選擇“就業(yè)”觀點,如果班主任從該觀點中,隨機(jī)選取2位同學(xué)進(jìn)行調(diào)查,那么恰好選到這2位女同學(xué)的概率是多少?(用樹形圖或列表法分析解答).21.(6分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側(cè)的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關(guān)系,并說明理由;(2)若∠A=30°,AB=4,求的長.22.(8分)如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結(jié)果都保留根號).23.(8分)如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點D,過點D作DE⊥AC,垂足為E,過點E作EF⊥AB,垂足為F,連接FD.(1)求證:DE是⊙O的切線;(2)求EF的長.24.(10分)已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是;以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是.25.(10分)閱讀材料:已知點和直線,則點P到直線的距離d可用公式計算.例如:求點到直線的距離.

解:因為直線可變形為,其中,所以點到直線的距離為:.根據(jù)以上材料,求:點到直線的距離,并說明點P與直線的位置關(guān)系;已知直線與平行,求這兩條直線的距離.26.(12分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.27.(12分)先化簡,然后從﹣<x<的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:根據(jù)題意可知總共有10種等可能的結(jié)果,一次就能打開該密碼的結(jié)果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.2、B【解析】

根據(jù)完全平方式的特點求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點睛】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.3、A【解析】

直接利用分式的乘除運算法則計算得出答案.【詳解】。故選:A.【點睛】考查了分式的乘除運算,正確分解因式再化簡是解題關(guān)鍵.4、B【解析】

在等腰三角形△ABE中,求出∠A的度數(shù)即可解決問題.【詳解】解:在正五邊形ABCDE中,∠A=×(5-2)×180=108°

又知△ABE是等腰三角形,

∴AB=AE,

∴∠ABE=(180°-108°)=36°.

故選B.【點睛】本題主要考查多邊形內(nèi)角與外角的知識點,解答本題的關(guān)鍵是求出正五邊形的內(nèi)角,此題基礎(chǔ)題,比較簡單.5、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術(shù)平方根即可.詳解:∵=2,而2的算術(shù)平方根是,∴的算術(shù)平方根是,故選B.點睛:此題主要考查了算術(shù)平方根的定義,解題時應(yīng)先明確是求哪個數(shù)的算術(shù)平方根,否則容易出現(xiàn)選A的錯誤.6、C【解析】

因為中位數(shù)的值與大小排列順序有關(guān),而此題中x的大小位置未定,故應(yīng)該分類討論x所處的所有位置情況:從小到大(或從大到?。┡帕性谥虚g;結(jié)尾;開始的位置.【詳解】(1)將這組數(shù)據(jù)從小到大的順序排列為2,3,4,5,x,

處于中間位置的數(shù)是4,

∴中位數(shù)是4,

平均數(shù)為(2+3+4+5+x)÷5,

∴4=(2+3+4+5+x)÷5,

解得x=6;符合排列順序;

(2)將這組數(shù)據(jù)從小到大的順序排列后2,3,4,x,5,

中位數(shù)是4,

此時平均數(shù)是(2+3+4+5+x)÷5=4,

解得x=6,不符合排列順序;

(3)將這組數(shù)據(jù)從小到大的順序排列后2,3,x,4,5,

中位數(shù)是x,

平均數(shù)(2+3+4+5+x)÷5=x,

解得x=3.5,符合排列順序;

(4)將這組數(shù)據(jù)從小到大的順序排列后2,x,3,4,5,

中位數(shù)是3,

平均數(shù)(2+3+4+5+x)÷5=3,

解得x=1,不符合排列順序;

(5)將這組數(shù)據(jù)從小到大的順序排列后x,2,3,4,5,

中位數(shù)是3,

平均數(shù)(2+3+4+5+x)÷5=3,

解得x=1,符合排列順序;

∴x的值為6、3.5或1.

故選C.【點睛】考查了確定一組數(shù)據(jù)的中位數(shù),涉及到分類討論思想,較難,要明確中位數(shù)的值與大小排列順序有關(guān),一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求;如果是偶數(shù)個,則找中間兩位數(shù)的平均數(shù).7、B【解析】

n邊形的內(nèi)角和可以表示成(n-2)?180°,設(shè)這個多邊形的邊數(shù)是n,就得到關(guān)于邊數(shù)的方程,從而求出邊數(shù),再求從一點引對角線的條數(shù).【詳解】設(shè)這個正多邊形的邊數(shù)是n,則

(n-2)?180°=900°,

解得:n=1.

則這個正多邊形是正七邊形.所以,從一點引對角線的條數(shù)是:1-3=4.故選B【點睛】本題考核知識點:多邊形的內(nèi)角和.解題關(guān)鍵點:熟記多邊形內(nèi)角和公式.8、B【解析】試題分析:“960萬”用科學(xué)記數(shù)法表示為9.6×106,故選B.考點:科學(xué)記數(shù)法—表示較大的數(shù).9、B【解析】試題分析:根據(jù)線段垂直平分線上的點到兩端點的距離相等解答.解:到三角形三個頂點的距離相等的點是三角形三邊垂直平分線的交點.故選B.點評:本題考查了線段垂直平分線上的點到兩端點的距離相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.10、B【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.【點睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.11、B【解析】

解:過點B作BE⊥AD于E.設(shè)BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.12、D【解析】

過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

根據(jù)單項式系數(shù)及次數(shù)的定義進(jìn)行解答即可.【詳解】根據(jù)單項式系數(shù)和次數(shù)的定義可知,﹣的系數(shù)是,次數(shù)是1.【點睛】本題考查了單項式,熟知單項式中的數(shù)字因數(shù)叫做單項式的系數(shù),一個單項式中所有字母的指數(shù)的和叫做單項式的次數(shù)是解題的關(guān)鍵.14、π【解析】∵∠C=30°,∴∠AOB=60°,∴.即的長為.15、n(m+2)(m﹣2)【解析】

先提取公因式n,再利用平方差公式分解即可.【詳解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案為n(m+2)(m﹣2).【點睛】本題主要考查了提取公因式法和公式法分解因式,熟練掌握平方差公式是解題關(guān)鍵16、4π【解析】根據(jù)扇形的面積公式可得:扇形AOB的面積為,故答案為4π.17、135【解析】試題分析:根據(jù)題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應(yīng)用.18、4.【解析】

|﹣3|+(﹣1)2=4,故答案為4.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.【解析】

(1)設(shè)乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據(jù)工作時間=工作總量÷工作效率結(jié)合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)設(shè)安排甲隊工作m天,則安排乙隊工作天,根據(jù)總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結(jié)合總費用不超過145萬元,即可得出關(guān)于m的一元一次不等式,解之取其中的最大值即可得出結(jié)論.【詳解】(1)設(shè)乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據(jù)題意得:,解得:x=40,經(jīng)檢驗,x=40是原分式方程的解,且符合題意,∴x=×40=60,答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;(2)設(shè)安排甲隊工作m天,則安排乙隊工作天,根據(jù)題意得:7m+5×≤145,解得:m≥10,答:至少安排甲隊工作10天.【點睛】本題考查了分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出分式方程;(2)根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式.20、(4)A高中觀點.4.446;(4)456人;(4)16【解析】試題分析:(4)全班人數(shù)乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”觀點的人數(shù),用460°乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”的觀點所在扇形區(qū)域的圓心角的度數(shù);(4)用全校初三年級學(xué)生數(shù)乘以選擇“B中技”觀點的百分比即可估計該校初三學(xué)生選擇“中技”觀點的人數(shù);(4)先計算出該班選擇“就業(yè)”觀點的人數(shù)為4人,則可判斷有4位女同學(xué)和4位男生選擇“就業(yè)”觀點,再列表展示44種等可能的結(jié)果數(shù),找出出現(xiàn)4女的結(jié)果數(shù),然后根據(jù)概率公式求解.試題解析:(4)該班學(xué)生選擇A高中觀點的人數(shù)最多,共有60%×50=4(人),在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是60%×460°=446°;(4)∵800×44%=456(人),∴估計該校初三學(xué)生選擇“中技”觀點的人數(shù)約是456人;(4)該班選擇“就業(yè)”觀點的人數(shù)=50×(4-60%-44%)=50×8%=4(人),則該班有4位女同學(xué)和4位男生選擇“就業(yè)”觀點,列表如下:共有44種等可能的結(jié)果數(shù),其中出現(xiàn)4女的情況共有4種.所以恰好選到4位女同學(xué)的概率=212考點:4.列表法與樹狀圖法;4.用樣本估計總體;4.扇形統(tǒng)計圖.21、(1)見解析;(2).【解析】

(1)先證明△OAC≌△ODC,得出∠1=∠2,則∠2=∠4,故OC∥DE,即可證得DE⊥CF;(2)根據(jù)OA=OC得到∠2=∠3=30°,故∠COD=120°,再根據(jù)弧長公式計算即可.【詳解】解:(1)DE⊥CF.理由如下:∵CF為切線,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴.【點睛】本題考查了全等三角形的判定與性質(zhì)與弧長的計算,解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)與弧長的公式.22、小船到B碼頭的距離是10海里,A、B兩個碼頭間的距離是(10+10)海里【解析】試題分析:過P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.試題解析:如圖:過P作PM⊥AB于M,則∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B碼頭的距離是海里,A、B兩個碼頭間的距離是()海里.考點:解直角三角形的應(yīng)用-方向角問題.23、(1)見解析;(2).【解析】

(1)連接OD,根據(jù)切線的判定方法即可求出答案;(2)由于OD∥AC,點O是AB的中點,從而可知OD為△ABC的中位線,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC?CE=4?1=3,在Rt△AEF中,所以EF=AE?sinA=3×sin60°=.【詳解】(1)連接OD,∵△ABC是等邊三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等邊三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切線(2)∵OD∥AC,點O是AB的中點,∴OD為△ABC的中位線,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴EF=AE?sinA=3×sin60°=【點睛】本題考查圓的綜合問題,涉及切線的判定,銳角三角函數(shù),含30度角的直角三角形的性質(zhì),等邊三角形的性質(zhì),本題屬于中等題型.24、(1)畫圖見解析,(2,-2);(2)畫圖見解析,(1,0);【解析】

(1)將△ABC向下平移4個單位長度得到的△A1B1C1,如圖所示,找出所求點坐標(biāo)即可;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論