2023-2024學年甘肅省平?jīng)鍪嗅轻紖^(qū)中考猜題數(shù)學試卷含解析_第1頁
2023-2024學年甘肅省平?jīng)鍪嗅轻紖^(qū)中考猜題數(shù)學試卷含解析_第2頁
2023-2024學年甘肅省平?jīng)鍪嗅轻紖^(qū)中考猜題數(shù)學試卷含解析_第3頁
2023-2024學年甘肅省平?jīng)鍪嗅轻紖^(qū)中考猜題數(shù)學試卷含解析_第4頁
2023-2024學年甘肅省平?jīng)鍪嗅轻紖^(qū)中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年甘肅省平?jīng)鍪嗅轻紖^(qū)中考猜題數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示,點E是正方形ABCD內一點,把△BEC繞點C旋轉至△DFC位置,則∠EFC的度數(shù)是()A.90° B.30° C.45° D.60°2.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示該位置上的小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.3.“趕陀螺”是一項深受人們喜愛的運動.如圖所示是一個陀螺的立體結構圖.已知底面圓的直徑AB=8cm,圓柱的高BC=6cm,圓錐的高CD=3cm,則這個陀螺的表面積是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm24.已知反比例函數(shù),下列結論不正確的是()A.圖象經(jīng)過點(﹣2,1) B.圖象在第二、四象限C.當x<0時,y隨著x的增大而增大 D.當x>﹣1時,y>25.如圖,四邊形ABCD是平行四邊形,點E在BA的延長線上,點F在BC的延長線上,連接EF,分別交AD,CD于點G,H,則下列結論錯誤的是()A. B. C. D.6.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.7.如果關于x的一元二次方程k2x2-(2k+1)x+1=0有兩個不相等的實數(shù)根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且8.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學記數(shù)法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時9.如果關于x的方程沒有實數(shù)根,那么c在2、1、0、中取值是()A.; B.; C.; D..10.一枚質地均勻的骰子,骰子的六個面上分別刻有1到6的點數(shù),投擲這樣的骰子一次,向上一面點數(shù)是偶數(shù)的結果有()A.1種 B.2種 C.3種 D.6種二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在ABCD中,AB=8,P、Q為對角線AC的三等分點,延長DP交AB于點M,延長MQ交CD于點N,則CN=__________.12.的倒數(shù)是_____________.13.如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.14.如果一個正多邊形每一個內角都等于144°,那么這個正多邊形的邊數(shù)是____.15.如圖所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB,AC于點E,F;②分別以點E,F為圓心,大于EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數(shù)為.

16.分解因式:m2n﹣2mn+n=.三、解答題(共8題,共72分)17.(8分)2018年平昌冬奧會在2月9日到25日在韓國平昌郡舉行,為了調查中學生對冬奧會比賽項目的了解程度,某中學在學生中做了一次抽樣調查,調查結果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據(jù)調查統(tǒng)計結果,繪制了如圖所示的不完整的三種統(tǒng)計圖表.對冬奧會了解程度的統(tǒng)計表對冬奧會的了解程度百分比A非常了解10%B比較了解15%C基本了解35%D不了解n%(1)n=;(2)扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是;(3)請補全條形統(tǒng)計圖;(4)根據(jù)調查結果,學校準備開展冬奧會的知識競賽,某班要從“非常了解”程度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定誰參賽,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機摸出一個球,若摸出的兩個球上的數(shù)字和為偶數(shù),則小明去,否則小剛去,請用畫樹狀圖或列表的方法說明這個游戲是否公平.18.(8分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對A1,A2,A3,A4統(tǒng)計后,制成如圖所示的統(tǒng)計圖.求七年級已“建檔立卡”的貧困家庭的學生總人數(shù);將條形統(tǒng)計圖補充完整,并求出A1所在扇形的圓心角的度數(shù);現(xiàn)從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.19.(8分)已知關于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數(shù)根.(1)求m的取值范圍;(2)若m為非負整數(shù),且該方程的根都是無理數(shù),求m的值.20.(8分)2013年3月,某煤礦發(fā)生瓦斯爆炸,該地救援隊立即趕赴現(xiàn)場進行救援,救援隊利用生命探測儀在地面A、B兩個探測點探測到C處有生命跡象.已知A、B兩點相距4米,探測線與地面的夾角分別是30°和45°,試確定生命所在點C的深度.(精確到0.1米,參考數(shù)據(jù):)21.(8分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結果保留根號形式)22.(10分)如圖,AB為圓O的直徑,點C為圓O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.(1)試判斷CD與圓O的位置關系,并說明理由;(2)若直線l與AB的延長線相交于點E,圓O的半徑為3,并且∠CAB=30°,求AD的長.23.(12分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載,某中學數(shù)學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側取點A、B,使∠CAD=30°,∠CBD=60°.求AB的長(結果保留根號);已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)24.如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標;若不存在,請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)正方形的每一個角都是直角可得∠BCD=90°,再根據(jù)旋轉的性質求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據(jù)等腰直角三角形的性質解答.【詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點C旋轉至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【點睛】本題目是一道考查旋轉的性質問題——每對對應點到旋轉中心的連線的夾角都等于旋轉角度,每對對應邊相等,故為等腰直角三角形.2、A【解析】

由三視圖的俯視圖,從左到右依次找到最高層數(shù),再由主視圖和俯視圖之間的關系可知,最高層高度即為主視圖高度.【詳解】解:幾何體從左到右的最高層數(shù)依次為1,2,3,所以主視圖從左到右的層數(shù)應該為1,2,3,故選A.【點睛】本題考查了三視圖的簡單性質,屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關系是解題關鍵.3、C【解析】試題分析:∵底面圓的直徑為8cm,高為3cm,∴母線長為5cm,∴其表面積=π×4×5+42π+8π×6=84πcm2,故選C.考點:圓錐的計算;幾何體的表面積.4、D【解析】

A選項:把(-2,1)代入解析式得:左邊=右邊,故本選項正確;

B選項:因為-2<0,圖象在第二、四象限,故本選項正確;

C選項:當x<0,且k<0,y隨x的增大而增大,故本選項正確;

D選項:當x>0時,y<0,故本選項錯誤.

故選D.5、C【解析】試題解析:∵四邊形ABCD是平行四邊形,故選C.6、D【解析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關鍵.7、B【解析】

在與一元二次方程有關的求值問題中,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有兩個實數(shù)根下必須滿足△=b2-4ac≥1.【詳解】由題意知,k≠1,方程有兩個不相等的實數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【點睛】本題考查根據(jù)根的情況求參數(shù),熟記判別式與根的關系是解題的關鍵.8、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】1010×360×24=3.636×106立方米/時,故選C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.9、A【解析】分析:由方程根的情況,根據(jù)根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關于x的方程x1+1x+c=0沒有實數(shù)根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關系是解題的關鍵.10、C【解析】試題分析:一枚質地均勻的正方體骰子的六個面上分別刻有1到6的點數(shù),擲一次這枚骰子,向上的一面的點數(shù)為偶數(shù)的有3種情況,故選C.考點:正方體相對兩個面上的文字.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

根據(jù)平行四邊形定義得:DC∥AB,由兩角對應相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的長.【詳解】∵四邊形ABCD是平行四邊形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q為對角線AC的三等分點,∴,,設CN=x,AM=1x,∴,解得,x=1,∴CN=1,故答案為1.【點睛】本題考查了平行四邊形的性質和相似三角形的判定和性質,熟練掌握兩角對應相等,兩三角形相似的判定方法是關鍵.12、【解析】先把帶分數(shù)化成假分數(shù)可得:,然后根據(jù)倒數(shù)的概念可得:的倒數(shù)是,故答案為:.13、1【解析】

根據(jù)題意得出△AOD∽△OCE,進而得出,即可得出k=EC×EO=1.【詳解】解:連接CO,過點A作AD⊥x軸于點D,過點C作CE⊥x軸于點E,∵連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵點A是雙曲線y=-在第二象限分支上的一個動點,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案為1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點以及相似三角形的判定與性質,正確添加輔助線,得出△AOD∽△OCE是解題關鍵.14、1【解析】

設正多邊形的邊數(shù)為n,然后根據(jù)多邊形的內角和公式列方程求解即可.【詳解】解:設正多邊形的邊數(shù)為n,由題意得,=144°,解得n=1.故答案為1.【點睛】本題考查了多邊形的內角與外角,熟記公式并準確列出方程是解題的關鍵.15、65°【解析】

根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,根據(jù)角平分線的性質解答即可.【詳解】根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,

∴∠CAD=25°;

在△ADC中,∠C=90°,∠CAD=25°,

∴∠ADC=65°(直角三角形中的兩個銳角互余);

故答案是:65°.16、n(m﹣1)1.【解析】

先提取公因式n后,再利用完全平方公式分解即可【詳解】m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.故答案為n(m﹣1)1.三、解答題(共8題,共72分)17、(1)40;(2)144°;(3)作圖見解析;(4)游戲規(guī)則不公平.【解析】

(1)根據(jù)統(tǒng)計圖可以求出這次調查的n的值;

(2)根據(jù)統(tǒng)計圖可以求得扇形統(tǒng)計圖中D部分扇形所對應的圓心角的度數(shù);

(3)根據(jù)題意可以求得調查為D的人數(shù),從而可以將條形統(tǒng)計圖補充完整;

(4)根據(jù)題意可以寫出樹狀圖,從而可以解答本題.【詳解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案為40;(2)扇形統(tǒng)計圖中D部分扇形所對應的圓心角是:360°×40%=144°,故答案為144°;(3)調查的結果為D等級的人數(shù)為:400×40%=160,故補全的條形統(tǒng)計圖如右圖所示,(4)由題意可得,樹狀圖如右圖所示,P(奇數(shù))P(偶數(shù))故游戲規(guī)則不公平.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?8、(1)15人;(2)補圖見解析.(3).【解析】

(1)根據(jù)三班有6人,占的百分比是40%,用6除以所占的百分比即可得總人數(shù);(2)用總人數(shù)減去一、三、四班的人數(shù)得到二班的人數(shù)即可補全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數(shù);(3)根據(jù)題意畫出樹狀圖,得出所有可能,進而求恰好選出一名男生和一名女生的概率.【詳解】解:(1)七年級已“建檔立卡”的貧困家庭的學生總人數(shù):6÷40%=15人;(2)A2的人數(shù)為15﹣2﹣6﹣4=3(人)補全圖形,如圖所示,A1所在圓心角度數(shù)為:×360°=48°;(3)畫出樹狀圖如下:共6種等可能結果,符合題意的有3種∴選出一名男生一名女生的概率為:P=.【點睛】本題考查了條形圖與扇形統(tǒng)計圖,概率等知識,準確識圖,從圖中發(fā)現(xiàn)有用的信息,正確根據(jù)已知畫出樹狀圖得出所有可能是解題關鍵.19、(1)m<2;(2)m=1.【解析】

(1)利用方程有兩個不相等的實數(shù)根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;

(2)先利用m的范圍得到m=3或m=1,再分別求出m=3和m=1時方程的根,然后根據(jù)根的情況確定滿足條件的m的值.【詳解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有兩個不相等的實數(shù)根,∴△>3.即﹣8m+2>3.解得m<2;(2)∵m<2,且m為非負整數(shù),∴m=3或m=1,當m=3時,原方程為x2-2x-3=3,解得x1=3,x2=﹣1(不符合題意舍去),當m=1時,原方程為x2﹣2=3,解得x1=,x2=﹣,綜上所述,m=1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=3(a≠3)的根與△=b2-4ac有如下關系:當△>3時,方程有兩個不相等的實數(shù)根;當△=3時,方程有兩個相等的實數(shù)根;當△<3時,方程無實數(shù)根.20、5.5米【解析】

過點C作CD⊥AB于點D,設CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出關于x的方程,解出即可.【詳解】解:過點C作CD⊥AB于點D,設CD=x,在Rt△ACD中,∠CAD=30°,則AD=CD=x.在Rt△BCD中,∠CBD=45°,則BD=CD=x.由題意得,x﹣x=4,解得:.答:生命所在點C的深度為5.5米.21、電視塔高為米,點的鉛直高度為(米).【解析】

過點P作PF⊥OC,垂足為F,在Rt△OAC中利用三角函數(shù)求出OC=100,根據(jù)山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函數(shù)即可求解.【詳解】過點P作PF⊥OC,垂足為F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA?tan∠OAC=100(米),過點P作PB⊥OA,垂足為B.由i=1:2,設PB=x,則AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【點睛】本題考查了特殊的直角三角形,三角函數(shù)的實際應用,中等難度,作出輔助線構造直角三角形并熟練應用三角函數(shù)是解題關鍵.22、(1)CD與圓O的位置關系是相切,理由詳見解析;(2)AD=.【解析】

(1)連接OC,求出OC和AD平行,求出OC⊥CD,根據(jù)切線的判定得出即可;(2)連接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【詳解】(1)CD與圓O的位置關系是相切,理由是:連接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC為半徑,∴CD與圓O的位置關系是相切;(2)連接BC,∵AB是⊙O的直徑,∴∠BCA=90°,∵圓O的半徑為3,∴AB=6,∵∠CAB=30°,∴∵∠BCA=∠CDA=90°,∠CAB=∠CAD,∴△CAB∽△DAC,∴∴∴【點睛】本題考查了切線的性質和判定,圓周角定理,相似三角形的性質和判定,解直角三角形等知識點,能綜合運用知識點進行推理是解此題的關鍵.23、(1);(2)此校車在AB路段超速,理由見解析.【解析】

(1)結合三角函數(shù)的計算公式,列出等式,分別計算AD和BD的長度,計算結果,即可.(2)在第一問的基礎上,結合時間關系,計算速度,判斷,即可.【詳解】解:(1)由題意得,在Rt△ADC中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論