2024屆山東省濟寧市泗水一中高三六校第一次聯(lián)考數學試卷含解析_第1頁
2024屆山東省濟寧市泗水一中高三六校第一次聯(lián)考數學試卷含解析_第2頁
2024屆山東省濟寧市泗水一中高三六校第一次聯(lián)考數學試卷含解析_第3頁
2024屆山東省濟寧市泗水一中高三六校第一次聯(lián)考數學試卷含解析_第4頁
2024屆山東省濟寧市泗水一中高三六校第一次聯(lián)考數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省濟寧市泗水一中高三六校第一次聯(lián)考數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的部分圖象如圖所示,已知,函數的圖象可由圖象向右平移個單位長度而得到,則函數的解析式為()A. B.C. D.2.已知函數,,當時,不等式恒成立,則實數a的取值范圍為()A. B. C. D.3.已知函數,若,則的取值范圍是()A. B. C. D.4.若不相等的非零實數,,成等差數列,且,,成等比數列,則()A. B. C.2 D.5.費馬素數是法國大數學家費馬命名的,形如的素數(如:)為費馬索數,在不超過30的正偶數中隨機選取一數,則它能表示為兩個不同費馬素數的和的概率是()A. B. C. D.6.已知函數f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.7.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數為()A. B. C. D.8.設函數,若函數有三個零點,則()A.12 B.11 C.6 D.39.已知函數,,若成立,則的最小值是()A. B. C. D.10.某幾何體的三視圖如圖所示,若側視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.11.已知變量的幾組取值如下表:12347若與線性相關,且,則實數()A. B. C. D.12.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.高三(1)班共有56人,學號依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個容量為4的樣本,已知學號為6,34,48的同學在樣本中,那么還有一個同學的學號應為.14.如圖所示,點,B均在拋物線上,等腰直角的斜邊為BC,點C在x軸的正半軸上,則點B的坐標是________.15.設函數,,其中.若存在唯一的整數使得,則實數的取值范圍是_____.16.若存在實數使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數”,下列各組函數中是對應區(qū)間上的“分離函數”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)P是圓上的動點,P點在x軸上的射影是D,點M滿足.(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.18.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環(huán)保知識競賽.(1)設事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數,求的分布列和數學期望.19.(12分)在平面直角坐標系中,已知直線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的極坐標為,直線與曲線的交點為,求的值.20.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.21.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.22.(10分)設數陣,其中、、、.設,其中,且.定義變換為“對于數陣的每一行,若其中有或,則將這一行中每個數都乘以;若其中沒有且沒有,則這一行中所有數均保持不變”(、、、).表示“將經過變換得到,再將經過變換得到、,以此類推,最后將經過變換得到”,記數陣中四個數的和為.(1)若,寫出經過變換后得到的數陣;(2)若,,求的值;(3)對任意確定的一個數陣,證明:的所有可能取值的和不超過.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由圖根據三角函數圖像的對稱性可得,利用周期公式可得,再根據圖像過,即可求出,再利用三角函數的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數的解析式、三角函數圖像的平移伸縮變換,需掌握三角形函數的平移伸縮變換原則,屬于基礎題.2、D【解析】

由變形可得,可知函數在為增函數,由恒成立,求解參數即可求得取值范圍.【詳解】,即函數在時是單調增函數.則恒成立..令,則時,單調遞減,時單調遞增.故選:D.【點睛】本題考查構造函數,借助單調性定義判斷新函數的單調性問題,考查恒成立時求解參數問題,考查學生的分析問題的能力和計算求解的能力,難度較難.3、B【解析】

對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數,由得或解得.故選:B.【點睛】本題考查利用分段函數性質解不等式,屬于基礎題.4、A【解析】

由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數列,所以,又,,成等比數列,所以,消去得,所以,解得或,因為,,是不相等的非零實數,所以,此時,所以.故選:A【點睛】本題考查了等差等比數列的綜合應用,考查了學生概念理解,轉化劃歸,數學運算的能力,屬于中檔題.5、B【解析】

基本事件總數,能表示為兩個不同費馬素數的和只有,,,共有個,根據古典概型求出概率.【詳解】在不超過的正偶數中隨機選取一數,基本事件總數能表示為兩個不同費馬素數的和的只有,,,共有個則它能表示為兩個不同費馬素數的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎題.6、A【解析】

先通過降冪公式和輔助角法將函數轉化為,再求最值.【詳解】已知函數f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數的逆用,還考查了運算求解的能力,屬于中檔題.7、B【解析】

因為時針經過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經過2小時,時針所轉過的弧度數為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.8、B【解析】

畫出函數的圖象,利用函數的圖象判斷函數的零點個數,然后轉化求解,即可得出結果.【詳解】作出函數的圖象如圖所示,令,由圖可得關于的方程的解有兩個或三個(時有三個,時有兩個),所以關于的方程只能有一個根(若有兩個根,則關于的方程有四個或五個根),由,可得的值分別為,則故選B.【點睛】本題考查數形結合以及函數與方程的應用,考查轉化思想以及計算能力,屬于??碱}型.9、A【解析】分析:設,則,把用表示,然后令,由導數求得的最小值.詳解:設,則,,,∴,令,則,,∴是上的增函數,又,∴當時,,當時,,即在上單調遞減,在上單調遞增,是極小值也是最小值,,∴的最小值是.故選A.點睛:本題易錯選B,利用導數法求函數的最值,解題時學生可能不會將其中求的最小值問題,通過構造新函數,轉化為求函數的最小值問題,另外通過二次求導,確定函數的單調區(qū)間也很容易出錯.10、C【解析】

由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.11、B【解析】

求出,把坐標代入方程可求得.【詳解】據題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質線性回歸直線一定過中心點可計算參數值.12、C【解析】

以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數形結合思想和向量法的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、20【解析】

根據系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號為第一組,15至28號為第二組,29號至42號為第三組,43號至56號為第四組.而學號6,34,48分別是第一、三、四組的學號,所以還有一個同學應該是15+6-1=20號,故答案為20.14、【解析】

設出兩點的坐標,結合拋物線方程、兩條直線垂直的條件以及兩點間的距離公式列方程,解方程求得的坐標.【詳解】設,由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點睛】本題考查拋物線的方程和運用,考查方程思想和運算能力,屬于中檔題.15、【解析】

根據分段函數的解析式畫出圖像,再根據存在唯一的整數使得數形結合列出臨界條件滿足的關系式求解即可.【詳解】解:函數,且畫出的圖象如下:因為,且存在唯一的整數使得,故與在時無交點,,得;又,過定點又由圖像可知,若存在唯一的整數使得時,所以,存在唯一的整數使得所以.根據圖像可知,當時,恒成立.綜上所述,存在唯一的整數使得,此時故答案為:【點睛】本題主要考查了數形結合分析參數范圍的問題,需要根據題意分別分析定點右邊的整數點中為滿足條件的唯一整數,再數形結合列出時的不等式求的范圍.屬于難題.16、①②④【解析】

由題意可知,若要存在使得成立,我們可考慮兩函數是否存在公切點,若兩函數在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調遞增,,即.令,則,單調遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調遞增,在上單調遞減,所以,即.令,則,易知在上單調遞減,在上單調遞增,所以,即.因此,滿足題意.故答案為:①②④【點睛】本題考查新定義題型、利用導數研究函數圖像,轉化與化歸思想,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)點M的軌跡C的方程為,軌跡C是以,為焦點,長軸長為4的橢圓(2)【解析】

(1)設,根據可求得,代入圓的方程可得所求軌跡方程;根據軌跡方程可知軌跡是以,為焦點,長軸長為的橢圓;(2)設,與橢圓方程聯(lián)立,利用求得;利用韋達定理表示出與,根據平行四邊形和向量的坐標運算求得,消去后得到軌跡方程;根據求得的取值范圍,進而得到最終結果.【詳解】(1)設,則由知:點在圓上點的軌跡的方程為:軌跡是以,為焦點,長軸長為的橢圓(2)設,由題意知的斜率存在設,代入得:則,解得:設,,則四邊形為平行四邊形又∴,消去得:頂點的軌跡方程為【點睛】本題考查圓錐曲線中的軌跡方程的求解問題,關鍵是能夠利用已知中所給的等量關系建立起動點橫縱坐標滿足的關系式,進而通過化簡整理得到結果;易錯點是求得軌跡方程后,忽略的取值范圍.18、(1);(2)見解析【解析】

(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因為學生總數為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點睛】本題考查分層抽樣,考查超幾何分布及期望,考查運算求解能力,是基礎題19、(1)(2)【解析】

(1)由公式可化極坐標方程為直角坐標方程;(2)把點極坐標化為直角坐標,直線的參數方程是過定點的標準形式,因此直接把參數方程代入曲線的方程,利用參數的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標方程為,即(2)點的直角坐標為,易知.設對應參數分別為將與聯(lián)立得【點睛】本題考查極坐標方程與直角坐標方程的互化,考查直線參數方程,解題時可利用利用參數方程的幾何意義求直線上兩點間距離問題.20、(1);(2)4【解析】

(1)根據已知用二倍角余弦求出,進而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結合基本不等式,求出的最大值,即可求出結論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當且僅當時,的面積有最大值4.【點睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應用基本不等式求最值,屬于基礎題.21、(1)證明見解析;(2).【解析】

(1)構造直線所在平面,由面面平行推證線面平行;(2)以為坐標原點,建立空間直角坐標系,分別求出兩個平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過點交于點,連接,如下圖所示:因為平面平面,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因為為中點,,故可得//,為中點;又因為四邊形為等腰梯形,是的中點,故可得//;又,且平面,平面,故面面,又因為平面,故面.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論