黑龍江省安達(dá)市吉星崗鎮(zhèn)第一中學(xué)2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
黑龍江省安達(dá)市吉星崗鎮(zhèn)第一中學(xué)2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
黑龍江省安達(dá)市吉星崗鎮(zhèn)第一中學(xué)2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
黑龍江省安達(dá)市吉星崗鎮(zhèn)第一中學(xué)2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
黑龍江省安達(dá)市吉星崗鎮(zhèn)第一中學(xué)2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省安達(dá)市吉星崗鎮(zhèn)第一中學(xué)2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.若一元二次方程x2﹣2kx+k2=0的一根為x=﹣1,則k的值為()A.﹣1 B.0 C.1或﹣1 D.2或02.已知,,且,則的值為()A.2或12 B.2或 C.或12 D.或3.如圖,菱形ABCD中,∠B=60°,AB=4,以AD為直徑的⊙O交CD于點(diǎn)E,則的長為()A. B. C. D.4.如圖,將半徑為2的圓形紙片折疊后,圓弧恰好經(jīng)過圓心,則折痕的長度為()A. B.2 C. D.5.某班為獎勵(lì)在學(xué)校運(yùn)動會上取得好成績的同學(xué),計(jì)劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元.如果購買甲、乙兩種獎品共花費(fèi)了650元,求甲、乙兩種獎品各購買了多少件.設(shè)購買甲種獎品x件,乙種獎品y件.依題意,可列方程組為()A. B.C. D.6.關(guān)于x的一元二次方程x2-4x+k=0有兩個(gè)相等的實(shí)數(shù)根,則k的值是()A.2 B.-2 C.4 D.-47.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°8.等腰三角形一條邊的邊長為3,它的另兩條邊的邊長是關(guān)于x的一元二次方程x2﹣12x+k=0的兩個(gè)根,則k的值是()A.27 B.36 C.27或36 D.189.由若干個(gè)相同的小立方體搭成的幾何體的三視圖如圖所示,則搭成這個(gè)幾何體的小立方體的個(gè)數(shù)是()A.3 B.4 C.5 D.610.在△ABC中,AB=3,BC=4,AC=2,D,E,F(xiàn)分別為AB,BC,AC中點(diǎn),連接DF,F(xiàn)E,則四邊形DBEF的周長是(

)A.5 B.7 C.9 D.11二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:x3﹣2x2+x=______.12.如圖,菱形ABCD的對角線的長分別為2和5,P是對角線AC上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是__________.13.若代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是____.14.如圖,在△ABC中,AD、BE分別是BC、AC兩邊中線,則=_____.15.計(jì)算:()0﹣=_____.16.二次根式中字母x的取值范圍是_____.17.因式分解:=三、解答題(共7小題,滿分69分)18.(10分)某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問題:(1)本次調(diào)查的學(xué)生有多少人?(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;(3)扇形統(tǒng)計(jì)圖中C對應(yīng)的中心角度數(shù)是;(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?19.(5分)如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動,分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.20.(8分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運(yùn)貨18噸,2輛大貨車與6輛小貨車一次可以運(yùn)貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運(yùn)貨多少噸?目前有33噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車共計(jì)10輛,全部貨物一次運(yùn)完,其中每輛大貨車一次運(yùn)費(fèi)花費(fèi)130元,每輛小貨車一次運(yùn)貨花費(fèi)100元,請問貨運(yùn)公司應(yīng)如何安排車輛最節(jié)省費(fèi)用?21.(10分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點(diǎn)B,連接CO并延長交⊙O于點(diǎn)D、E,連接AD并延長交BC于點(diǎn)F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;(2)求證:(3)若BC=AB,求tan∠CDF的值.22.(10分)如果一條拋物線與軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.(1)“拋物線三角形”一定是三角形;(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點(diǎn)為對稱中心的矩形?若存在,求出過三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.23.(12分)如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A,B重合的動點(diǎn),PC∥AB,點(diǎn)M是OP中點(diǎn).(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當(dāng)∠BOP=時(shí),四邊形AOCP是菱形;②連接BP,當(dāng)∠ABP=時(shí),PC是⊙O的切線.24.(14分)清朝數(shù)學(xué)家梅文鼎的《方程論》中有這樣一題:山田三畝,場地六畝,共折實(shí)田四畝七分;又山田五畝,場地三畝,共折實(shí)田五畝五分,問每畝山田折實(shí)田多少,每畝場地折實(shí)田多少?譯文為:若有山田3畝,場地6畝,其產(chǎn)糧相當(dāng)于實(shí)田4.7畝;若有山田5畝,場地3畝,其產(chǎn)糧相當(dāng)于實(shí)田5.5畝,問每畝山田和每畝場地產(chǎn)糧各相當(dāng)于實(shí)田多少畝?

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

把x=﹣1代入方程計(jì)算即可求出k的值.【詳解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故選:A.【點(diǎn)睛】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.2、D【解析】

根據(jù)=5,=7,得,因?yàn)椋瑒t,則=5-7=-2或-5-7=-12.故選D.3、B【解析】

連接OE,由菱形的性質(zhì)得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠DOE=60°,再由弧長公式即可得出答案.【詳解】解:連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的長==;故選B.【點(diǎn)睛】本題考查弧長公式、菱形的性質(zhì)、等腰三角形的性質(zhì)等知識;熟練掌握菱形的性質(zhì),求出∠DOE的度數(shù)是解決問題的關(guān)鍵.4、C【解析】

過O作OC⊥AB,交圓O于點(diǎn)D,連接OA,由垂徑定理得到C為AB的中點(diǎn),再由折疊得到CD=OC,求出OC的長,在直角三角形AOC中,利用勾股定理求出AC的長,即可確定出AB的長.【詳解】過O作OC⊥AB,交圓O于點(diǎn)D,連接OA,由折疊得到CD=OC=OD=1cm,在Rt△AOC中,根據(jù)勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,則AB=2AC=2cm.故選C.【點(diǎn)睛】此題考查了垂徑定理,勾股定理,以及翻折的性質(zhì),熟練掌握垂徑定理是解本題的關(guān)鍵.5、A【解析】

根據(jù)題意設(shè)未知數(shù),找到等量關(guān)系即可解題,見詳解.【詳解】解:設(shè)購買甲種獎品x件,乙種獎品y件.依題意,甲、乙兩種獎品共20件,即x+y=20,購買甲、乙兩種獎品共花費(fèi)了650元,即40x+30y=650,綜上方程組為,故選A.【點(diǎn)睛】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關(guān)系是解題關(guān)鍵.6、C【解析】

對于一元二次方程a+bx+c=0,當(dāng)Δ=-4ac=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根.即16-4k=0,解得:k=4.考點(diǎn):一元二次方程根的判別式7、C【解析】

如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準(zhǔn)確識圖是解題的關(guān)鍵.8、B【解析】試題分析:由于等腰三角形的一邊長3為底或?yàn)檠荒艽_定,故應(yīng)分兩種情況進(jìn)行討論:(3)當(dāng)3為腰時(shí),其他兩條邊中必有一個(gè)為3,把x=3代入原方程可求出k的值,進(jìn)而求出方程的另一個(gè)根,再根據(jù)三角形的三邊關(guān)系判斷是否符合題意即可;(3)當(dāng)3為底時(shí),則其他兩條邊相等,即方程有兩個(gè)相等的實(shí)數(shù)根,由△=0可求出k的值,再求出方程的兩個(gè)根進(jìn)行判斷即可.試題解析:分兩種情況:(3)當(dāng)其他兩條邊中有一個(gè)為3時(shí),將x=3代入原方程,得:33-33×3+k=0解得:k=37將k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能組成三角形,不符合題意舍去;(3)當(dāng)3為底時(shí),則其他兩邊相等,即△=0,此時(shí):344-4k=0解得:k=3將k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能夠組成三角形,符合題意.故k的值為3.故選B.考點(diǎn):3.等腰三角形的性質(zhì);3.一元二次方程的解.9、B【解析】分析:從俯視圖中可以看出最底層小正方體的個(gè)數(shù)及形狀,從主視圖可以看出每一層小正方體的層數(shù)和個(gè)數(shù),從而算出總的個(gè)數(shù).解答:解:從主視圖看第一列兩個(gè)正方體,說明俯視圖中的左邊一列有兩個(gè)正方體,主視圖右邊的一列只有一行,說明俯視圖中的右邊一行只有一列,所以此幾何體共有四個(gè)正方體.故選B.10、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點(diǎn),∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、x(x-1)2.【解析】由題意得,x3﹣2x2+x=x(x﹣1)212、【解析】

根據(jù)題意可得陰影部分的面積等于△ABC的面積,因?yàn)椤鰽BC的面積是菱形面積的一半,根據(jù)已知可求得菱形的面積則不難求得陰影部分的面積.【詳解】設(shè)AP,EF交于O點(diǎn),∵四邊形ABCD為菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四邊形AEFP是平行四邊形.∴S△POF=S△AOE.即陰影部分的面積等于△ABC的面積.∵△ABC的面積等于菱形ABCD的面積的一半,菱形ABCD的面積=ACBD=5,∴圖中陰影部分的面積為5÷2=.13、x≠﹣5.【解析】

根據(jù)分母不為零分式有意義,可得答案.【詳解】由題意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【點(diǎn)睛】本題考查了分式有意義的條件,利用分母不為零分式有意義得出不等式是解題關(guān)鍵.14、【解析】

利用三角形中位線的性質(zhì)定理以及相似三角形的性質(zhì)即可解決問題;【詳解】∵AE=EC,BD=CD,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴=,故答案是:.【點(diǎn)睛】考查相似三角形的判定和性質(zhì)、三角形中位線定理等知識,解題的關(guān)鍵是熟練掌握三角形中位線定理.15、-1【解析】

本題需要運(yùn)用零次冪的運(yùn)算法則、立方根的運(yùn)算法則進(jìn)行計(jì)算.【詳解】由分析可得:()0﹣=1-2=﹣1.【點(diǎn)睛】熟練運(yùn)用零次冪的運(yùn)算法則、立方根的運(yùn)算法則是本題解題的關(guān)鍵.16、x≤1【解析】

二次根式有意義的條件就是被開方數(shù)是非負(fù)數(shù),即可求解.【詳解】根據(jù)題意得:1﹣x≥0,解得x≤1.故答案為:x≤1【點(diǎn)睛】主要考查了二次根式的意義和性質(zhì).性質(zhì):二次根式中的被開方數(shù)必須是非負(fù)數(shù),否則二次根式無意義.17、﹣3(x﹣y)1【解析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案為:﹣3(x﹣y)1.點(diǎn)睛:本題考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式進(jìn)行二次分解,注意分解要徹底.三、解答題(共7小題,滿分69分)18、(1)150人;(2)補(bǔ)圖見解析;(3)144°;(4)300盒.【解析】

(1)根據(jù)喜好A口味的牛奶的學(xué)生人數(shù)和所占百分比,即可求出本次調(diào)查的學(xué)生數(shù).(2)用調(diào)查總?cè)藬?shù)減去A、B、D三種喜好不同口味牛奶的人數(shù),求出喜好C口味牛奶的人數(shù),補(bǔ)全統(tǒng)計(jì)圖.再用360°乘以喜好C口味的牛奶人數(shù)所占百分比求出對應(yīng)中心角度數(shù).(3)用總?cè)藬?shù)乘以A、B口味牛奶喜歡人數(shù)所占的百分比得出答案.【詳解】解:(1)本次調(diào)查的學(xué)生有30÷20%=150人;(2)C類別人數(shù)為150﹣(30+45+15)=60人,補(bǔ)全條形圖如下:(3)扇形統(tǒng)計(jì)圖中C對應(yīng)的中心角度數(shù)是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得出必要的信息是解題的關(guān)鍵.19、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1,△PCM為直角三角形或等腰三角形.【解析】

(1)將A(3,0),C(0,4)代入,運(yùn)用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點(diǎn)P、點(diǎn)M的坐標(biāo),即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應(yīng),則若以P、C、F為頂點(diǎn)的三角形和△AEM相似時(shí),分兩種情況進(jìn)行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過點(diǎn)A(3,0),點(diǎn)C(0,4),∴,解得.∴拋物線的解析式為.(2)設(shè)直線AC的解析式為y=kx+b,∵A(3,0),點(diǎn)C(0,4),∴,解得.∴直線AC的解析式為.∵點(diǎn)M的橫坐標(biāo)為m,點(diǎn)M在AC上,∴M點(diǎn)的坐標(biāo)為(m,).∵點(diǎn)P的橫坐標(biāo)為m,點(diǎn)P在拋物線上,∴點(diǎn)P的坐標(biāo)為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點(diǎn)的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1,△PCM為直角三角形或等腰三角形.20、(1)1輛大貨車一次可以運(yùn)貨4噸,1輛小貨車一次可以運(yùn)貨噸;(2)貨運(yùn)公司應(yīng)安排大貨車8輛時(shí),小貨車2輛時(shí)最節(jié)省費(fèi)用.【解析】

(1)設(shè)1輛大貨車和1輛小貨車一次可以分別運(yùn)貨噸和噸,根據(jù)“3輛大貨車與4輛小貨車一次可以運(yùn)貨18噸、2輛大貨車與6輛小貨車一次可以運(yùn)貨17噸”列方程組求解可得;(2)因運(yùn)輸33噸且用10輛車一次運(yùn)完,故10輛車所運(yùn)貨不低于10噸,所以列不等式,大貨車運(yùn)費(fèi)高于小貨車,故用大貨車少費(fèi)用就小進(jìn)行安排即可.【詳解】(1)解:設(shè)1輛大貨車一次可以運(yùn)貨x噸,1輛小貨車一次可以運(yùn)貨y噸,依題可得:

,

解得:.

答:1輛大貨車一次可以運(yùn)貨4噸,1輛小貨車一次可以運(yùn)貨噸.

(2)解:設(shè)大貨車有m輛,則小貨車10-m輛,依題可得:

4m+(10-m)≥33

m≥0

10-m≥0

解得:≤m≤10,

∴m=8,9,10;

∴當(dāng)大貨車8輛時(shí),則小貨車2輛;

當(dāng)大貨車9輛時(shí),則小貨車1輛;

當(dāng)大貨車10輛時(shí),則小貨車0輛;

設(shè)運(yùn)費(fèi)為W=130m+100(10-m)=30m+1000,

∵k=30〉0,

∴W隨x的增大而增大,

∴當(dāng)m=8時(shí),運(yùn)費(fèi)最少,

∴W=130×8+100×2=1240(元),

答:貨運(yùn)公司應(yīng)安排大貨車8輛時(shí),小貨車2輛時(shí)最節(jié)省費(fèi)用.【點(diǎn)睛】考查了二元一次方程組和一元一次不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)建模思想,考查了學(xué)生用方程解實(shí)際問題的能力,解題的關(guān)鍵是根據(jù)題意建立方程組,并利用不等式求解大貨車的數(shù)量,解題時(shí)注意題意中一次運(yùn)完的含義,此類試題常用的方法為建立方程,利用不等式或者一次函數(shù)性質(zhì)確定方案.21、(1)∠CBD與∠CEB相等,證明見解析;(2)證明見解析;(3)tan∠CDF=.【解析】試題分析:(1)由AB是⊙O的直徑,BC切⊙O于點(diǎn)B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,從而可得∠A=∠CBD,結(jié)合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,從而可得△EBC∽△BDC,再由相似三角形的性質(zhì)即可得到結(jié)論;(3)設(shè)AB=2x,結(jié)合BC=AB,AB是直徑,可得BC=3x,OB=OD=x,再結(jié)合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,從而可得△DCF∽△BCD,由此可得:==,這樣即可得到tan∠CDF=tan∠DBF==.試題解析:(1)∠CBD與∠CEB相等,理由如下:∵BC切⊙O于點(diǎn)B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)設(shè)AB=2x,∵BC=AB,AB是直徑,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.點(diǎn)睛:解答本題第3問的要點(diǎn)是:(1)通過證∠CDF=∠A=∠DBF,把求tan∠CDF轉(zhuǎn)化為求tan∠DBF=;(2)通過證△DCF∽△BCD,得到.22、(1)等腰(2)(3)存在,【解析】解:(1)等腰(2)∵拋物線的“拋物線三角形”是等腰直角三角形,∴該拋物線的頂點(diǎn)滿足.∴.(3)存在.如圖,作△與△關(guān)于原點(diǎn)中心對稱,則四邊形為平行四邊形.當(dāng)時(shí),平行四邊形為矩形.又∵,∴△為等邊三角形.作,垂足為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論