版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
18.1.1平行四邊形的性質(zhì)平行四邊形的定義ABCD定義:兩組對(duì)邊分別平行的四邊形是平行四邊形符號(hào):平行四邊形用“”表示。如圖:平行四邊形ABCD記作“ABCD”幾何語(yǔ)言:如圖,∵AB∥CD,AD∥BC∴四邊形ABCD是平行四邊形5、如圖,已知四邊形ABCD是平行四邊,點(diǎn)E,B,D,F在同一直線上.垂足分別是E,F(xiàn).求證:AE=CF.可能是()鄰邊:相鄰的邊稱為鄰邊如圖,ABCD的對(duì)角線AC,BD交于點(diǎn)O,若AC=6,BD=8,則AB的長(zhǎng)求證:AB=CD,AD=BC,∠A=∠C,∠B=∠DAE長(zhǎng)為半徑畫(huà)弧,交邊BC于點(diǎn)F,連接BE,DF.∴AB=CD,AD=BC,∠A=∠C,∠B=∠D如圖,AC,BD是平行四邊形ABCD的兩條對(duì)角線ABCD,讀作:AB平行等于CD∴OA=OC,OD=OB求證:AB=CD,AD=BC,∠A=∠C,∠B=∠D35°C.平行四邊形的兩組對(duì)邊分別平行∴OA=OC,OD=OB4、如圖,在平行四邊形ABCD中,點(diǎn)E在邊AD上,以C為圓心,如圖:平行四邊形ABCD記作“ABCD”性質(zhì)3:平行四邊形的對(duì)角相等,鄰角互補(bǔ)。也就是說(shuō),兩條平行線之間的任何兩條平行線段都相等。∠ABC和∠BCD是一組鄰角探究:如圖,在ABCD中,連接AC,BD,并設(shè)它們相交于點(diǎn)O,鄰邊:相鄰的邊稱為鄰邊鄰角:相鄰的角稱為鄰角已知:四邊形ABCD是平行四邊形平行四邊形的其它概念對(duì)角線:平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線段叫它的對(duì)角線如圖,AC,BD是平行四邊形ABCD的兩條對(duì)角線
ABCD對(duì)邊:相對(duì)的邊稱為對(duì)邊鄰邊:相鄰的邊稱為鄰邊如圖,AB和CD是平行四邊形ABCD的一組對(duì)邊,AB和BC是一組鄰邊
對(duì)角:相對(duì)的角稱為對(duì)角鄰角:相鄰的角稱為鄰角如圖,∠ABC和∠ADC是平行四邊形ABCD的一組對(duì)角,∠ABC和∠BCD是一組鄰角
平行四邊形的性質(zhì)1ABCD平行四邊形的兩組對(duì)邊分別平行幾何語(yǔ)言:如圖,∵四邊形ABCD是平行四邊形∴AB∥CD,AD∥BC根據(jù)定義畫(huà)一個(gè)平行四邊形,觀察它,除了“兩組對(duì)邊分別平行”外,它的邊之間還有什么關(guān)系?它的角之間有什么關(guān)系?度量一下,和你的猜想一致嗎?探究ABCD猜想:平行四邊形的對(duì)邊相等;平行四邊形的對(duì)角相等。ABCD已知:四邊形ABCD是平行四邊形求證:AB=CD,AD=BC,∠A=∠C,∠B=∠DABCD1423證明:如圖,連接AC∵AB∥CD,AD∥BC∴∠1=∠2,∠3=∠4又∵AC=AC(公共邊)∴△ABC≌△CDA∴AB=CD,AD=BC,∠A=∠C,∠B=∠D如圖,a∥b,c∥d,c,d與a,b分別相交于A,B,C,D四點(diǎn),由平行四邊形的概念與性質(zhì)可知,四邊形ABCD是平行四邊形,AB=CD,也就是說(shuō),兩條平行線之間的任何兩條平行線段都相等。平行四邊形的對(duì)角相等。如圖,ABCD的對(duì)角線AC,BD交于點(diǎn)O,若AC=6,BD=8,則AB的長(zhǎng)如圖,將ABCD的一邊BC延長(zhǎng)至點(diǎn)E。如圖,AB和CD是平行四邊形ABCD的一組對(duì)邊,AB和BC是一組鄰邊10B.∴OA=OC,OD=OB探究:如圖,在ABCD中,連接AC,BD,并設(shè)它們相交于點(diǎn)O,如圖,a∥b,c∥d,c,d與a,b分別相交于A,B,C,D四點(diǎn),由平行四邊形的概念與性質(zhì)可知,四邊形ABCD是平行四邊形,AB=CD,如圖,ABCD的對(duì)角線AC,BD交于點(diǎn)O,若AC=6,BD=8,則AB的長(zhǎng)垂足分別是E,F(xiàn).求證:AE=CF.如圖,AC,BD是平行四邊形ABCD的兩條對(duì)角線如圖:平行四邊形ABCD記作“ABCD”對(duì)角:相對(duì)的角稱為對(duì)角對(duì)邊:相對(duì)的邊稱為對(duì)邊ABCD,讀作:AB平行等于CD∴四邊形ABCD是平行四邊形∴OA=OC,OD=OB4、如圖,在平行四邊形ABCD中,點(diǎn)E在邊AD上,以C為圓心,兩條平行線中,一條直線上任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線之間的距離.如圖,∵AB∥CD,AD∥BC如圖,將ABCD的一邊BC延長(zhǎng)至點(diǎn)E。對(duì)角:相對(duì)的角稱為對(duì)角性質(zhì)2:平行四邊形的對(duì)邊相等;性質(zhì)3:平行四邊形的對(duì)角相等,鄰角互補(bǔ)。ABCD幾何語(yǔ)言:∵四邊形ABCD是平行四邊形∴AB=CD,AD=BC,∠A=∠C,∠B=∠D平行四邊形的兩組對(duì)邊分別平行平行四邊形的對(duì)邊相等平行四邊形的對(duì)邊平行且相等∥=讀作:平行且相等ABCDABCD,讀作:AB平行等于CD∥=1.如圖,將ABCD的一邊BC延長(zhǎng)至點(diǎn)E。若∠A=110°,則∠1等于()A.110°B.35°C.70°D.55°CABCD2.如圖,在ABCD中,AB=3,BC=4,則平行四邊形ABCD的周長(zhǎng)是143、如圖,在平行四邊形ABCD中,DE⊥AB,BF⊥CD,垂足分別是E,F(xiàn).求證:AE=CF.如圖,a∥b,c∥d,c,d與a,b分別相交于A,B,C,D四點(diǎn),由平行四邊形的概念與性質(zhì)可知,四邊形ABCD是平行四邊形,AB=CD,也就是說(shuō),兩條平行線之間的任何兩條平行線段都相等。兩條平行線之間的距離的概念兩條平行線中,一條直線上任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線之間的距離.如圖,a∥b,A是a上的任意點(diǎn),AB⊥b,B是垂足,線段AB的長(zhǎng)就是a,b之間的距離.探究:如圖,在ABCD中,連接AC,BD,并設(shè)它們相交于點(diǎn)O,OA與OC,OB與OD有什么關(guān)系?OA=OCOB=OD性質(zhì)4:平行四邊形的對(duì)角線互相平分幾何語(yǔ)言:∵四邊形ABCD是平行四邊形∴OA=OC,OD=OB4、如圖,在平行四邊形ABCD中,點(diǎn)E在邊AD上,以C為圓心,AE長(zhǎng)為半徑畫(huà)弧,交邊BC于點(diǎn)F,連接BE,DF.求證:△ABE≌△CDF5、如圖,已知四邊形ABCD是平行四邊,點(diǎn)E,B,D,F在同一直線上.且BE=DF.求證:AE=CF6.如圖,ABCD的對(duì)角線AC,BD交于點(diǎn)O,若AC=6,BD=8,則AB的長(zhǎng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人健身教練合同:2024版專業(yè)輔導(dǎo)合同書(shū)版B版
- 2025年食堂節(jié)能環(huán)保設(shè)施改造承包協(xié)議9篇
- 2025年高新技術(shù)產(chǎn)業(yè)園區(qū)土地購(gòu)置合同范本3篇
- 2025年度跨境電商供應(yīng)鏈融資擔(dān)保合同4篇
- 2025版企業(yè)綠化項(xiàng)目施工合同范本匯編4篇
- 二零二五版環(huán)保檢測(cè)技術(shù)服務(wù)合同標(biāo)準(zhǔn)范本3篇
- 2024年藥品研發(fā)與藥師合作契約3篇
- 個(gè)人投資合同及投資款支付借條(2024版)3篇
- 2025年度智慧安防系統(tǒng)承包意向書(shū)4篇
- 東莞市規(guī)范離婚合同書(shū)2024版樣本版
- 檢驗(yàn)員績(jī)效考核
- 農(nóng)藥合成研發(fā)項(xiàng)目流程
- 機(jī)電安裝工程安全管理
- 2024年上海市第二十七屆初中物理競(jìng)賽初賽試題及答案
- 信息技術(shù)部年終述職報(bào)告總結(jié)
- 理光投影機(jī)pj k360功能介紹
- 六年級(jí)數(shù)學(xué)上冊(cè)100道口算題(全冊(cè)完整版)
- 八年級(jí)數(shù)學(xué)下冊(cè)《第十九章 一次函數(shù)》單元檢測(cè)卷帶答案-人教版
- 帕薩特B5維修手冊(cè)及帕薩特B5全車電路圖
- 小學(xué)五年級(jí)解方程應(yīng)用題6
- 年月江西省南昌市某綜合樓工程造價(jià)指標(biāo)及
評(píng)論
0/150
提交評(píng)論