版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆貴州省銅仁市碧江區(qū)銅仁一中高考沖刺押題(最后一卷)數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若關(guān)于的不等式有正整數(shù)解,則實數(shù)的最小值為()A. B. C. D.2.集合的真子集的個數(shù)為()A.7 B.8 C.31 D.323.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.4.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.5.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實際高度最接近的是()A.400米 B.480米C.520米 D.600米6.設(shè)集合,集合,則=()A. B. C. D.R7.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.8.函數(shù)在的圖像大致為A. B. C. D.9.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種10.已知等比數(shù)列滿足,,則()A. B. C. D.11.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.12.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知各項均為正數(shù)的等比數(shù)列的前項積為,,(且),則__________.14.為激發(fā)學(xué)生團結(jié)協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經(jīng)參加比賽的場次為__________.15.函數(shù)的極大值為______.16.設(shè)、、、、是表面積為的球的球面上五點,四邊形為正方形,則四棱錐體積的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓的另一交點為,當(dāng)點在以線段為直徑的圓上時,求直線的方程.18.(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若對任意成立,求實數(shù)的取值范圍.19.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標(biāo)原點,求的取值范圍.20.(12分)設(shè)為實數(shù),已知函數(shù),.(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間:(2)設(shè)為實數(shù),若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個相異的零點,求的取值范圍.21.(12分)設(shè)橢圓的右焦點為,過的直線與交于兩點,點的坐標(biāo)為.(1)當(dāng)直線的傾斜角為時,求線段AB的中點的橫坐標(biāo);(2)設(shè)點A關(guān)于軸的對稱點為C,求證:M,B,C三點共線;(3)設(shè)過點M的直線交橢圓于兩點,若橢圓上存在點P,使得(其中O為坐標(biāo)原點),求實數(shù)的取值范圍.22.(10分)根據(jù)國家統(tǒng)計局?jǐn)?shù)據(jù),1978年至2018年我國GDP總量從0.37萬億元躍升至90萬億元,實際增長了242倍多,綜合國力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國GDP總量,表中,.326.4741.90310209.7614.05(1)根據(jù)數(shù)據(jù)及統(tǒng)計圖表,判斷與(其中為自然對數(shù)的底數(shù))哪一個更適宜作為全國GDP總量關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由),并求出關(guān)于的回歸方程.(2)使用參考數(shù)據(jù),估計2020年的全國GDP總量.線性回歸方程中斜率和截距的最小二乘法估計公式分別為:,.參考數(shù)據(jù):45678的近似值5514840310972981
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)題意可將轉(zhuǎn)化為,令,利用導(dǎo)數(shù),判斷其單調(diào)性即可得到實數(shù)的最小值.【詳解】因為不等式有正整數(shù)解,所以,于是轉(zhuǎn)化為,顯然不是不等式的解,當(dāng)時,,所以可變形為.令,則,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,所以當(dāng)時,,故,解得.故選:A.【點睛】本題主要考查不等式能成立問題的解法,涉及到對數(shù)函數(shù)的單調(diào)性的應(yīng)用,構(gòu)造函數(shù)法的應(yīng)用,導(dǎo)數(shù)的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力,屬于中檔題.2、A【解析】
計算,再計算真子集個數(shù)得到答案.【詳解】,故真子集個數(shù)為:.故選:.【點睛】本題考查了集合的真子集個數(shù),意在考查學(xué)生的計算能力.3、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關(guān)鍵在于能夠準(zhǔn)確還原幾何體,從而分別求解各部分的體積.4、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.5、B【解析】
根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺和第二展望臺的距離,進而由比例即可求得該塔的實際高度.【詳解】設(shè)第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點睛】本題考查了對中國文化的理解與簡單應(yīng)用,屬于基礎(chǔ)題.6、D【解析】試題分析:由題,,,選D考點:集合的運算7、D【解析】
說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).8、B【解析】
由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點成中心對稱,排除選項C.又排除選項D;,排除選項A,故選B.【點睛】本題通過判斷函數(shù)的奇偶性,縮小考察范圍,通過計算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識、基本計算能力的考查.9、B【解析】
首先將五天進行分組,再對名著進行分配,根據(jù)分步乘法計數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數(shù)原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數(shù)原理的應(yīng)用,易錯點是忽略分組中涉及到的平均分組問題.10、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.11、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.12、A【解析】
由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用等比數(shù)列的性質(zhì)求得,進而求得,再利用對數(shù)運算求得的值.【詳解】由于,,所以,則,∴,,.故答案為:【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運算,屬于基礎(chǔ)題.14、2【解析】
根據(jù)比賽場次,分析,畫出圖象,計算結(jié)果.【詳解】畫圖所示,可知目前(五)班已經(jīng)賽了2場.故答案為:2【點睛】本題考查推理,計數(shù)原理的圖形表示,意在考查數(shù)形結(jié)合分析問題的能力,屬于基礎(chǔ)題型.15、【解析】
先求函的定義域,再對函數(shù)進行求導(dǎo),再解不等式得單調(diào)區(qū)間,進而求得極值點,即可求出函數(shù)的極大值.【詳解】函數(shù),,,令得,,當(dāng)時,,函數(shù)單調(diào)遞增;當(dāng)時,,函數(shù)單調(diào)遞減,當(dāng)時,函數(shù)取到極大值,極大值為.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,求解時注意定義域優(yōu)先法則的應(yīng)用.16、【解析】
根據(jù)球的表面積求得球的半徑,設(shè)球心到四棱錐底面的距離為,求得四棱錐的表達(dá)式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設(shè)球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當(dāng)且僅當(dāng)時等號成立.故答案為:【點睛】本小題主要考查球的表面積有關(guān)計算,考查球的內(nèi)接四棱錐體積的最值的求法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】
(1)根據(jù)題意計算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設(shè),由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【點睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關(guān)系求直線,將題目轉(zhuǎn)化為是解題的關(guān)鍵.18、(1)(2)【解析】
(1)把代入,利用零點分段討論法求解;(2)對任意成立轉(zhuǎn)化為求的最小值可得.【詳解】解:(1)當(dāng)時,不等式可化為.討論:①當(dāng)時,,所以,所以;②當(dāng)時,,所以,所以;③當(dāng)時,,所以,所以.綜上,當(dāng)時,不等式的解集為.(2)因為,所以.又因為,對任意成立,所以,所以或.故實數(shù)的取值范圍為.【點睛】本題主要考查含有絕對值不等式的解法及恒成立問題,恒成立問題一般是轉(zhuǎn)化為最值問題求解,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運算的核心素養(yǎng).19、(1);(2).【解析】
(1)根據(jù)焦點坐標(biāo)和離心率,結(jié)合橢圓中的關(guān)系,即可求得的值,進而得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達(dá)定理表示出,由判別式可得;由平面向量的線性運算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點坐標(biāo)公式可得點的坐標(biāo),代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結(jié)合函數(shù)單調(diào)性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設(shè)直線的方程為,點滿足,則為中點,點在圓上,設(shè),聯(lián)立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點,則點在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因為在內(nèi)單調(diào)遞增,所以,即所以【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程求法,直線與橢圓的位置關(guān)系綜合應(yīng)用,由韋達(dá)定理研究參數(shù)間的關(guān)系,平面向量的線性運算與數(shù)量積運算,弦長公式的應(yīng)用及換元法在求取值范圍問題中的綜合應(yīng)用,計算量大,屬于難題.20、(1)函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)(3)【解析】
(1)據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出;(2)分離參數(shù),可得對任意的及任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性以及最值得關(guān)系即可求出的范圍【詳解】解:(1)當(dāng)時,因為,當(dāng)時,;當(dāng)時,.所以函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設(shè),,則,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數(shù)在上單調(diào)遞增,所以函數(shù)至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當(dāng)時,,所以,所以,所以當(dāng)時,函數(shù)的值域為.所以,存在,使得,即,①且當(dāng)時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.因為函數(shù)有兩個零點,,所以.②設(shè),,則,所以函數(shù)在單調(diào)遞增,由于,所以當(dāng)時,.所以,②式中的,又由①式,得.由第(1)小題可知,當(dāng)時,函數(shù)在上單調(diào)遞減,所以,即.當(dāng)時,(ⅰ)由于,所以得,又因為,且函數(shù)在上單調(diào)遞減,函數(shù)的圖象在上不間斷,所以函數(shù)在上恰有一個零點;(ⅱ)由于,令,設(shè),,由于時,,,所以設(shè),即.由①式,得,當(dāng)時,,且,同理可得函數(shù)在上也恰有一個零點.綜上,.【點睛】本題考查含參數(shù)的導(dǎo)數(shù)的單調(diào)性,利用導(dǎo)數(shù)求不等式恒成立問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第八屆全國高校輔導(dǎo)員素質(zhì)能力大賽賽題(案例分析)
- 幼小銜接培訓(xùn)心得體會10篇
- 效期藥品管理策略
- 文化傳媒拍賣交易準(zhǔn)則
- 金融市場監(jiān)控法律顧問管理辦法
- 基坑降水施工合同:地鐵隧道工程
- 工業(yè)廠房施工合同糾紛模板
- 家具城租賃家居生活租賃合同
- 藝術(shù)設(shè)備保養(yǎng)維護管理規(guī)程
- 印刷廠環(huán)境與職業(yè)健康安全
- 新高考教學(xué)質(zhì)量考核方案
- (完整版)韓國商法
- 體育課教學(xué)活動設(shè)計方案
- 中華民族共同體概論課件第六講五胡入華與中華民族大交融(魏晉南北朝)
- 【課件】Unit+3Extended+reading+Of+Friendship+說課課件牛津譯林版(2020)高中英語必修第一冊
- 注射相關(guān)感染預(yù)防與控制
- 2024年廣東佛山市三水海江昇平建設(shè)工程有限公司招聘筆試參考題庫附帶答案詳解
- 4.1DNA是主要的遺傳物質(zhì)課件高一下學(xué)期生物人教版必修2
- 六年級上冊數(shù)學(xué)??家族e應(yīng)用題(100道)
- 肺功能檢查及其臨床應(yīng)用幻燈課件
- 《疆喀什介紹》課件
評論
0/150
提交評論