2024屆吉林省通化一中高三下學期聯(lián)合考試數(shù)學試題含解析_第1頁
2024屆吉林省通化一中高三下學期聯(lián)合考試數(shù)學試題含解析_第2頁
2024屆吉林省通化一中高三下學期聯(lián)合考試數(shù)學試題含解析_第3頁
2024屆吉林省通化一中高三下學期聯(lián)合考試數(shù)學試題含解析_第4頁
2024屆吉林省通化一中高三下學期聯(lián)合考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆吉林省通化一中高三下學期聯(lián)合考試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.2.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.23.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.4.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.5.已知i為虛數(shù)單位,則()A. B. C. D.6.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.7.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.48.已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為()A. B. C. D.9.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則10.中國鐵路總公司相關(guān)負責人表示,到2018年底,全國鐵路營業(yè)里程達到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著B.從2014年到2018年這5年,高鐵運營里程與年價正相關(guān)C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上D.從2014年到2018年這5年,高鐵運營里程數(shù)依次成等差數(shù)列11.A. B. C. D.12.若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.14.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內(nèi)切圓方程是________.15.已知雙曲線的漸近線與準線的一個交點坐標為,則雙曲線的焦距為______.16.若雙曲線的離心率為,則雙曲線的漸近線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣不存在逆矩陣,且非零特低值對應(yīng)的一個特征向量,求的值.18.(12分)已知橢圓()的離心率為,且經(jīng)過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關(guān)于軸對稱?若存在,求出點的坐標;若不存在,說明理由.19.(12分)如圖,在中,,,點在線段上.(1)若,求的長;(2)若,,求的面積.20.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.21.(12分)記為數(shù)列的前項和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項和.22.(10分)設(shè)實數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

令,進而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學思想,恰當?shù)挠靡粋€未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.2、D【解析】

設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計算,離心率的求法,屬于基礎(chǔ)題和易錯題.3、D【解析】

通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.4、D【解析】

根據(jù)三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎(chǔ)題.5、A【解析】

根據(jù)復數(shù)乘除運算法則,即可求解.【詳解】.故選:A.【點睛】本題考查復數(shù)代數(shù)運算,屬于基礎(chǔ)題題.6、D【解析】

先求出四個頂點、四個焦點的坐標,四個頂點構(gòu)成一個菱形,求出菱形的面積,四個焦點構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.7、A【解析】

根據(jù)題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計算可得答案.【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關(guān)鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.8、D【解析】

設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應(yīng)用,弦長公式的應(yīng)用,屬于中檔題.9、C【解析】

根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.10、D【解析】

由折線圖逐項分析即可求解【詳解】選項,顯然正確;對于,,選項正確;1.6,1.9,2.2,2.5,2.9不是等差數(shù)列,故錯.故選:D【點睛】本題考查統(tǒng)計的知識,考查數(shù)據(jù)處理能力和應(yīng)用意識,是基礎(chǔ)題11、A【解析】

直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.12、C【解析】

利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較、、三個數(shù)與和的大小關(guān)系,進而可得出、、三個數(shù)的大小關(guān)系.【詳解】對數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點睛】本題考查指數(shù)冪與對數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來比較,考查推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

計算R(t,0),PR=t﹣(t),△PRS的面積為S,導數(shù)S′,由S′=0得t=1,根據(jù)函數(shù)的單調(diào)性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導數(shù)f′(x)=tetx,∴過Q的切線斜率k=t,設(shè)R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導數(shù)S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導數(shù)求面積的最值問題,意在考查學生的計算能力和應(yīng)用能力.14、【解析】

利用公式計算出,其中為的周長,為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設(shè)內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內(nèi)切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.15、1【解析】

由雙曲線的漸近線,以及求得的值即可得答案.【詳解】由于雙曲線的漸近線與準線的一個交點坐標為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【點睛】本題考查雙曲線的性質(zhì),注意題目“雙曲線的漸近線與準線的一個交點坐標為”這一條件的運用,另外注意題目中要求的焦距即,容易只計算到,就得到結(jié)論.16、【解析】

利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因為雙曲線的離心率為,所以,即,因為雙曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點睛】本題考查雙曲線的幾何性質(zhì);考查運算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

由不存在逆矩陣,可得,再利用特征多項式求出特征值3,0,,利用矩陣乘法運算即可.【詳解】因為不存在逆矩陣,,所以.矩陣的特征多項式為,令,則或,所以,即,所以,所以【點睛】本題考查矩陣的乘法及特征值、特征向量有關(guān)的問題,考查學生的運算能力,是一道容易題.18、(1)(2)見解析【解析】

(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點,滿足直線與直線恰關(guān)于軸對稱.設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.設(shè),,定點.(依題意則由韋達定理可得,,.直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當,即時,直線與直線恰關(guān)于軸對稱成立.特別地,當直線為軸時,也符合題意.綜上所述,存在軸上的定點,滿足直線與直線恰關(guān)于軸對稱.【點睛】本題考查橢圓方程,直線與橢圓位置關(guān)系,熟記橢圓方程簡單性質(zhì),熟練轉(zhuǎn)化題目條件,準確計算是關(guān)鍵,是中檔題.19、(1)(2)【解析】

(1)先根據(jù)平方關(guān)系求出,再根據(jù)正弦定理即可求出;(2)分別在和中,根據(jù)正弦定理列出兩個等式,兩式相除,利用題目條件即可求出,再根據(jù)余弦定理求出,即可根據(jù)求出的面積.【詳解】(1)由,得,所以.由正弦定理得,,即,得.(2)由正弦定理,在中,,①在中,,②又,,,由得,由余弦定理得,即,解得,所以的面積.【點睛】本題主要考查正余弦定理在解三角形中的應(yīng)用,以及三角形面積公式的應(yīng)用,意在考查學生的數(shù)學運算能力,屬于基礎(chǔ)題.20、(1);(2)【解析】

(1),對函數(shù)求導,分別求出和,即可求出在點處的切線方程;(2)對求導,分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因為,所以,所以,則,故曲線在點處的切線方程為.(2)因為,所以,①當時,在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當時,令,解得,即在上單調(diào)遞減,則,故不符合題意;③當時,在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點睛】本題考查了曲線的切線方程的求法,考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.21、(1);(2)證明見詳解,【解析】

(1)根據(jù),可得,然后作差,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,用取代,得到新的式子,然后作差,可得結(jié)果,最后根據(jù)等比數(shù)列的前項和公式,可得結(jié)果.【詳解】(1)由①,則②②-①可得:所以(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論