版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山西省大同四中聯(lián)盟體高三一診考試數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則()A. B. C. D.2.已知函數(shù),則()A.函數(shù)在上單調遞增 B.函數(shù)在上單調遞減C.函數(shù)圖像關于對稱 D.函數(shù)圖像關于對稱3.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.4.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數(shù)為()A. B. C. D.5.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.6.已知實數(shù),則下列說法正確的是()A. B.C. D.7.如圖所示,在平面直角坐標系中,是橢圓的右焦點,直線與橢圓交于,兩點,且,則該橢圓的離心率是()A. B. C. D.8.若復數(shù)()是純虛數(shù),則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.秦九韶是我國南寧時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.10.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.11.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.12.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.關于函數(shù)有下列四個命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)14.設,若關于的方程有實數(shù)解,則實數(shù)的取值范圍_____.15.設復數(shù)滿足,則_________.16.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.18.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)若點在直線上,求直線的極坐標方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.19.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)若,求曲線與的交點坐標;(2)過曲線上任意一點作與夾角為45°的直線,交于點,且的最大值為,求的值.20.(12分)設函數(shù)()的最小值為.(1)求的值;(2)若,,為正實數(shù),且,證明:.21.(12分)已知函數(shù).(1)若函數(shù)不存在單調遞減區(qū)間,求實數(shù)的取值范圍;(2)若函數(shù)的兩個極值點為,,求的最小值.22.(10分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)指數(shù)函數(shù)的單調性,即當?shù)讛?shù)大于1時單調遞增,當?shù)讛?shù)大于零小于1時單調遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應用不等式的性質和指對函數(shù)的單調性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質得到大小關系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關系.2、C【解析】
依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調性;【詳解】解:由,,所以函數(shù)圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調性,屬于基礎題.3、B【解析】
根據(jù)函數(shù)的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【點睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應用,屬于基礎題.4、B【解析】
因為時針經過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經過2小時,時針所轉過的弧度數(shù)為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.5、B【解析】
根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結合題意可得出關于的等式,即可得出結果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.6、C【解析】
利用不等式性質可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調性判斷.【詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調遞增性質,即可得出.對于指數(shù)函數(shù)單調遞減性質,因此不成立.故選:.【點睛】利用不等式性質比較大?。⒁獠坏仁叫再|成立的前提條件.解決此類問題除根據(jù)不等式的性質求解外,還經常采用特殊值驗證的方法.7、A【解析】
聯(lián)立直線方程與橢圓方程,解得和的坐標,然后利用向量垂直的坐標表示可得,由離心率定義可得結果.【詳解】由,得,所以,.由題意知,所以,.因為,所以,所以.所以,所以,故選:A.【點睛】本題考查了直線與橢圓的交點,考查了向量垂直的坐標表示,考查了橢圓的離心率公式,屬于基礎題.8、B【解析】
化簡復數(shù),由它是純虛數(shù),求得,從而確定對應的點的坐標.【詳解】是純虛數(shù),則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數(shù)的除法運算,考查復數(shù)的概念與幾何意義.本題屬于基礎題.9、B【解析】
列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點睛】本題考查根據(jù)算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎題.10、D【解析】
如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.11、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據(jù)列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.12、D【解析】
先用公差表示出,結合等比數(shù)列求出.【詳解】,因為成等比數(shù)列,所以,解得.【點睛】本題主要考查等差數(shù)列的通項公式.屬于簡單題,化歸基本量,尋求等量關系是求解的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】
由單調性、對稱性概念、導數(shù)的幾何意義、導數(shù)與極值的關系進行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數(shù)的單調性、對稱性,考查導數(shù)的幾何意義、導數(shù)與極值,解題時按照相關概念判斷即可,屬于中檔題.14、【解析】
先求出,從而得函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).即可得的最大值為,令,得函數(shù)取得最小值,由有實數(shù)解,,進而得實數(shù)的取值范圍.【詳解】解:,當時,;當時,;函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).所以的最大值為,令,所以當時,函數(shù)取得最小值,又因為方程有實數(shù)解,那么,即,所以實數(shù)的取值范圍是:.故答案為:【點睛】本題考查了函數(shù)的單調性,函數(shù)的最值問題,導數(shù)的應用,屬于中檔題.15、.【解析】
利用復數(shù)的運算法則首先可得出,再根據(jù)共軛復數(shù)的概念可得結果.【詳解】∵復數(shù)滿足,∴,∴,故而可得,故答案為.【點睛】本題考查了復數(shù)的運算法則,共軛復數(shù)的概念,屬于基礎題.16、【解析】
先確定球心的位置,結合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設,.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用零點分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結合基本不等式,求得的最小值.【詳解】(1)當時,,即,無解;當時,,即,得;當時,,即,得.故所求不等式的解集為.(2)因為,所以,則,.當且僅當即時取等號.故的最小值為.【點睛】本小題主要考查零點分段法解絕對值不等式,考查利用基本不等式求最值,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.18、(1)(2)【解析】
(1)利用消參法以及點求解出的普通方程,根據(jù)極坐標與直角坐標的轉化求解出直線的極坐標方程;(2)將的坐標設為,利用點到直線的距離公式結合三角函數(shù)的有界性,求解出取最小值時對應的值.【詳解】(1)消去參數(shù)得普通方程為,將代入,可得,即所以的極坐標方程為(2)的直角坐標方程為直線的直角坐標方程設的直角坐標為∵在直線上,∴的最小值為到直線的距離的最小值∵,∴當,時取得最小值即,∴【點睛】本題考查直線的參數(shù)方程、普通方程、極坐標方程的互化以及根據(jù)曲線上一點到直線距離的最值求參數(shù),難度一般.(1)直角坐標和極坐標的互化公式:;(2)求解曲線上一點到直線的距離的最值,可優(yōu)先考慮將點的坐標設為參數(shù)方程的形式,然后再去求解.19、(1),;(2)或【解析】
(1)將曲線的極坐標方程和直線的參數(shù)方程化為直角坐標方程,聯(lián)立方程,即可求得曲線與的交點坐標;(2)由直線的普通方程為,故上任意一點,根據(jù)點到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標方程為.當時,直線的普通方程為由解得或.從而與的交點坐標為,.(2)由題意知直線的普通方程為,的參數(shù)方程為(為參數(shù))故上任意一點到的距離為則.當時,的最大值為所以;當時,的最大值為,所以.綜上所述,或【點睛】解題關鍵是掌握極坐標和參數(shù)方程化為直角坐標方程的方法,和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.20、(1)(2)證明見解析【解析】
(1)分類討論,去絕對值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質,得出的單調性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當時,單調遞減;當時,單調遞增.所以當時,取最小值.(2)證明:由(1)可知.要證明:,即證,因為,,為正實數(shù),所以.當且僅當,即,,時取等號,所以.【點睛】本題考查絕對值不等式和基本不等式的應用,還運用“乘1法”和分類討論思想,屬于中檔題.21、(1)(2)【解析】分析:(1)先求導,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構造函數(shù)再利用導數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個極值點故為方程的兩根,,,則由由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度教學儀器知識產權保護合同
- 全新轎車購買合同范本
- 2025年度金融貸款居間風險控制合同
- 全國授權合同范本
- 養(yǎng)鵝合同范例
- 切割支撐合同范本
- 業(yè)主和裝修工長合同范例
- 2025年度花卉市場渠道建設與拓展合同
- 自愿租賃房屋意向合同范本
- n 1賠償合同范本
- 2022注冊電氣工程師專業(yè)考試規(guī)范清單匯總
- 一年級寫字下學期課件(PPT 38頁)
- 怎樣處理課堂突發(fā)事件
- 桂花-作文ppt-PPT課件(共14張)
- 高一數(shù)學概率部分知識點總結及典型例題解析 新課標 人教版 必修
- 鐵路運費計算方法
- 《小腦梗死護理查房》
- 免疫及炎癥相關信號通路
- 某風電場設備材料設備清單
- —橋梁專業(yè)施工圖設計審查要(終)
- 德龍自卸車合格證掃描件(原圖)
評論
0/150
提交評論