《統(tǒng)計建模與R軟件》書本課后習(xí)題答案_第1頁
《統(tǒng)計建模與R軟件》書本課后習(xí)題答案_第2頁
《統(tǒng)計建模與R軟件》書本課后習(xí)題答案_第3頁
《統(tǒng)計建模與R軟件》書本課后習(xí)題答案_第4頁
《統(tǒng)計建模與R軟件》書本課后習(xí)題答案_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第二章答案:

Ex2.1

x<-c(l,2,3)

y<-c(4,5,6)

e<-c(l,l,l)

z=2*x+y+e

zl=crossprod(x,y)#zl為xl與x2的內(nèi)積或者x%*%y

z2=tcrossprod(x,y)#zl為xl與x2的外積或者x%o%y

z;zl;z2

要點:基本的列表賦值方法,內(nèi)積和外積概念。內(nèi)積為標(biāo)量,外積為矩陣。

Ex2.2

A<-matrix(l:20zc(4,5));A

B<-matrix(l:20,nrow=4,byrow=TRUE);B

C=A+B;C

#不存在AB這種寫法

E=A*B;E

F<-A[1:3,1:3];F

H<-matrix(c(l/2/4/5)/nrow=l);H

#H起過渡作用,不規(guī)則的數(shù)組下標(biāo)

G<-BLH];G

要點:矩陣賦值方法。默認(rèn)是byrow二FALSE,數(shù)據(jù)按列放置。

取出部分?jǐn)?shù)據(jù)的方法。可以用數(shù)組作為數(shù)組的下標(biāo)取出數(shù)組元素。

Ex2.3

#或者省略二,如卜.面

x<-c(rep(l/times=5),rep(2,times=3)/rep(3/times=4),rep(4,times=2));xtimes

的形式

x<-c(rep(l,5),rep(2/3),rep(3/4),rep(4,2));x

要點:rep()的使用方法。rep(a,b)即將a重復(fù)b次

Ex2.4

n<-5;H<-array(O,dim=c(nzn))

for(iinl:n){for(jinl:n){H[ij]<-l/(i+j-l)}};H

G<-solve(H);G#求H的逆矩陣

ev<-eigen(H);ev#求H的特征值和特征向量

要點:數(shù)組初始化;for循環(huán)的使用

待解決:如何將很長的命令(如for循環(huán))用兒行打出來再執(zhí)行?每次想換行的時候一按回

車就執(zhí)行了還沒打完的命令...

Ex2.5

',,,,,,,,,,,''

StudentData<-data.frame(name=c(zhangsan",lisi"/"wangwuzzhaoliuz"dingyi"),sex=c(F","M,

,,,,,,''',,,,,',,',,,,,',,,,

T^M^T),age=c('14^''15\16,14;'15'),height=c(156;165';'157';162,;159'),weight=c(

”42”,“49”J41.5“J52”J45.5"));StudentData

要點:數(shù)據(jù)框的使用

待解決:SSH登陸linux服務(wù)器中文顯示亂碼。此處用英文代替。

Ex2.6

write.table(StudentData,file="studentdata.txt")

#把數(shù)據(jù)框StudentData在工作目錄里輸出,輸出的文件名為studentdata.txt.

StudentData_a<-read.table("studentdata.txt");StudentData_a

#以數(shù)據(jù)框的形式讀取文檔studentdata.txt,存入數(shù)據(jù)框StudentData_a中。

write.csv(StudentData_a,"studentdata.csv")

#把數(shù)據(jù)框StudentData_a在工作目錄里輸出,輸出的文件名為studentdata.csv,可用Excel打

開.

要點:讀寫文件。read.table("file")

write.table(Rdata,"file")

read.csv("file")

write.csv(Rdata,"file")

外部文件,不論是待讀入或是要寫出的,命令中都得加雙引號。

Ex2.7

Fun<-function(n){

if(n<=0)

list(fail=Hpleaseinputaintegerabove0!")

else{

repeat{

if(n==l)break

elseif(n%%2==O){n<-n/2}

elsen<-3*n+l

}

list("sucess!")

在linux下新建一個R文件,輸入上述代碼,保存為“2.7.R"

然后在當(dāng)前目錄下進入R環(huán)境,輸入source("2.7.R“),即打開了這個程序腳本。

然后就可以執(zhí)行函數(shù)了。

輸入Fun(67),顯示

?'sucess!"

輸入Fun(-l),顯示

$fail

[1]"pleaseinputaintegerabove0!H

待解決:source(“*.R”)是可以理解為載入這個R文件吧?如何在R環(huán)境下關(guān)閉R文件呢?

0K,自己寫的第一個R程序~~

Ex3.1

新建txt文件如下:3.l.txt

74.379.575.073.575.874.073.567.275.873.578.875.673.575.075.8

72.079.576.573.579.568.875.078.872.068.876.573.572.775.070.4

78.078.874.364.376.574.374.770.472.776.570.472.075.875.870.4

76.565.077.273.572.780.572.065.080.371.277.676.568.873.577.2

80.572.074.369.781.267.381.667.372.784.369.774.371.274.375.0

72.075.467.381.675.071.271.269.773.570.475.072.767.370.376.5

73.572.068.073.568.074.372.772.774.370.4

編寫一個函數(shù)(程序名為data_outline.R)描述樣本的各種描述性統(tǒng)計量。

data_outline<-function(x){

n<-length(x)

m<-mean(x)

v<-var(x)

s<-sd(x)

me<-median(x)

cv<-100*s/m

css<-sum((x-m)A2)

uss<-sum(xA2)

R<-max(x)-min(x)

RI<-quantile(x,3^4)-quantile(x,l/4)

sm<-s/sqrt(n)

gl<-n/((n-l)*(n-2))*sum((x-m)A3)/sA3

g2<-((n*(n+l))/((n-l)*(n-2)*(n-3))*sum((x-m)A4)/sA4-(3*(n-l)A2)/((n-2)*(n-3)))

data.frame(N二n,Mean=m,Var=v,std_dev=s,Median=me,std_mean=sm,CV=cv,CSS=css,USS=uss,R=

R,Rl=Rl,Skewness=glzKurtosis=g2,s=l)

)

進入R,

source("data_outline.R")#將程序調(diào)入內(nèi)存

#將數(shù)據(jù)讀入向量

serumdata<-scan("3.1.txt");serumdataserumdata0

data_outline(serumdata)

結(jié)果如下:

NMeanVarstd_devMedianstd_meanCVCSSUSSR

110073.69615.416753.92641773.50.39264175.3278571526.258544636.320

RISkewnessKurtosis

14.60.038542490.07051809

要點:read.table()用于讀表格形式的文件。上述形式的數(shù)據(jù)由于第七行缺幾個數(shù)據(jù),故用

read.table。不能讀入。scan??梢灾苯幼x純文本文件。scan。和matrix。連用還可以將數(shù)據(jù)存

放成矩陣形式。X<-matrix(scan("3.l.txt”,0),ncol=10,byrow二TRUE)#將上述數(shù)據(jù)放置成

10*10的矩陣。

scan()還可以從屏幕上直接輸入數(shù)據(jù)。

Y<-scan()

然后按提示輸入即可。結(jié)束輸入時按回車即可。

Ex3.2

>hist(serumdata,freq=FALSE,col="purple"/border="red",density=3,angle=60,main=paste("the

histogramofserumdata”),xlab二“age”,ylab="frequency")#直方圖。col是填充顏色。默認(rèn)空白。

border是邊框的顏色,默認(rèn)前景色。density是在圖上畫條紋陰影,默認(rèn)不畫。angle是條紋

陰影的傾斜角度(逆時針方向),默認(rèn)45度。main,xlab,ylab是標(biāo)題,x和y坐標(biāo)軸名稱。

>lines(density(serumdata),col="blue")#密度估計曲線。

>x<-64:85

>lines(x,dnorm(x,mean(serumdata),sd(serumdata)),col="green")#正態(tài)分布的概率密度曲線

#繪制經(jīng)驗分布圖

>plot(ecdf(serumdata),verticals=TRUE/do.p=FALSE)

>lines(x,pnorm(x,mean(serumdata),sd(serumdata)),col=nblue")#正態(tài)經(jīng)驗分布

>qqnorm(serumdata,col=npurple")#繪缶ijQQ圖

>qqline(serumdata,col=Hred")#繪制QQ直線

Ex3.3

>stem(serumdata,scale=l)#作莖葉圖。原始數(shù)據(jù)小數(shù)點后數(shù)值四舍五入。

Thedecimalpointisatthe|

64300

6623333

6800888777

7034444442222

720000000777777755555555555

74033333333700000004688888

765555555226

780888555

80355266

82

843

>boxplot(serumdata,col="lightblue",notch=T)#作箱線圖。notch表示帶有缺LI。

>fivenum(serumdata)#五數(shù)總結(jié)

[1]64.371.273.575.884.3

Ex3.4

>shapiro.test(serumdata)#正態(tài)性Shapori-Wilk檢驗方法

Shapiro-Wilknormalitytest

data:serumdata

W=0.9897,p-value=0.6437

結(jié)論:p值>0.05,可認(rèn)為來自正態(tài)分布的總體。

>ks.test(serumdata,"pnorm",mean(serumdata),sd(serumdata))#Kolmogrov-Smirnov檢驗,正態(tài)

One-sampleKoimogorov-Smirnovtest

data:serumdata

D=0.0701,p-value=0.7097

alternativehypothesis:two-sided

Warningmessage:

Inks.test(serumdata,"pnorm",mean(serumdata),sd(serumdata)):

cannotcomputecorrectp-valueswithties

結(jié)論:p值>0.05,可認(rèn)為來自正態(tài)分布的總體。

注意,這里的警告信息,是因為數(shù)據(jù)中有重復(fù)的數(shù)值,ks檢驗要求待檢數(shù)據(jù)時連續(xù)的,不

允許重復(fù)值。

Ex3.5

>y<-c(2,4,3,2,4,7,7,2,2,5,4,5,6,8,5」0,7,12」2,6,6,7,11,6,6,7,9,5,5,10,6,3,10)#輸入數(shù)據(jù)

#因子分類

>f<-factor(c(rep(l/ll),rep(2/10),rep(3,12)))

>plotff^col^'lightgreen")#plot()生成箱線圖

>x<-c(2,4,3,2,4,7,7,2,2,5,4)

>y<-c(5z6,8z5,10,7,12,12,6/6)

>z<-c(7,H,6,6,7,9,5,5,10,6,3,10)

'',生成箱線圖

>boxplot(x,y,z/names=c("l",27'3"),col=c(5,6,7))#boxplot()

結(jié)論:第2和第3組沒有顯著差異。第1組合其他兩組有顯著差異。

Ex3.6

數(shù)據(jù)太多,懶得錄入。離散圖應(yīng)該用plot即可。

Ex3.7

>studata<-read.table("3.7.txt")#讀入數(shù)據(jù)

>data.frame(studata)#轉(zhuǎn)化為數(shù)據(jù)框

VIV2V3V4V5V6

11alicef1356.584.0

22beckaf1365.398.0

33gailf1464.390.0

44karenf1256.377.0

55kathyf1259.884.5

66maryf1566.5112.0

77sandyf1151.350.5

88sharonf1562.5112.5

99tammyf1462.8102.5

1010alfredm1469.0112.5

1111dukem1463.5102.5

1212guidom1567.0133.0

1313jamesm1257.383.0

1414jefferym1362.584.0

1515johnm1259.099.5

1616philipm1672.0150.0

1717robertm1264.8128.0

1818thomasm1157.585.0

1919williamm1566.5112.0

,,n給各列命名

>names(studata)<-c("stuno"/"name7sex",age"/"height","weight"),studata#

stunonamesexageheightweight

11alicef1356.584.0

22beckaf1365.398.0

33gailf1464.390.0

>attach(studata)#將數(shù)據(jù)框調(diào)入內(nèi)存

>plot(weight~height,col="recT)#體重對于身高的散點圖

>coplot(weight^height|sex,col="blue”)#不同性別,體重與身高的散點圖

>coplot(weight^height|age^ol^'blue")#不同年齡,體重與身高的散點圖

>coplot(weight^height|age+sex,col="blue")#不同年齡和性別,體重與身高的散點圖

Ex3.8

>x<-seq(-2z3,0.05)

>y<-seq(-lz7,0.05)

>f<-function(x,y)xA4-2*xA2*y+xA2-2*x*y+2*yA2+4.5*x-4*y+4

>z<-outer(x,y,f)#必須做外積運算才能繪出三維圖形

>contour(x/y/z,levels=c(0/l,2,3,4,5,10,15,20,30,40,50,60,80,100),

三位網(wǎng)格曲面

>persp(x,y,zztheta=120,phi=0,expand=0.7,col="lightblue")#

Ex3.9

>attach(studata)

相關(guān)性檢驗

>cor.test(heightzweight)#Pearson

Pearson'sproduct-momentcorrelation

data:heightandweight

t=7.5549,df=17,p-value=7.887e-07

alternativehypothesis:truecorrelationisnotequalto0

95percentconfidenceinterval:

0.70443140.9523101

sampleestimates:

cor

0.8777852

山此可見身高和體重是相關(guān)的。

Ex3.10

Ex3.ll

上述兩題原始數(shù)據(jù)太多,網(wǎng)上找不到,懶得錄入。略。

Ex4.2

指數(shù)分布,入的極大似然估計是n/sum(Xi)

>

x<-c(rep(5,365),rep(15,245),rep(25,150),rep(35,100),rep(45,70),rep(55,45)

,rep(65,25))

>lamda<-length(x)/sum(x);lamda

[1]0.05

Ex4.3

Poisson分布P(x=k)=AAk/k!*eA(-A)

其均數(shù)和方差相等,均為人,其含義為平均每升水中大腸桿菌個數(shù)。

取均值即可。

>x<-c(rep(0,17),rep(1,20),rep(2,10),rep(3,2),rep(4,1))

>mean(x)

[1]1

平均為1個。

Ex4.4

>

obj<-function(x){f<-c(-13+x[1]+((5-x[2])*x[2]-2)*x[2],-29+x[1]+((x[2]+1

)*x[2]-14)*x[2]);sum(fA2)}#其實我也不知道這是在干什么。所謂的無約束優(yōu)化問

題。

>x0<-c(0.5,-2)

>nlm(obj,xO)

$minimum

[1]48.98425

$estimate

[1]11.4127791-0.8968052

$gradient

[1]1.411401e-08-1.493206e-07

$code

[1]1

$iterations

[1]16

Ex4.5

>x<-c(54,67,68,78,70,66,67,70,65,69)

>t.test(x)#t.test()做單樣本正態(tài)分布區(qū)間估計

OneSamplet-test

data:x

t=35.947,df=9,p-value=4.938e-11

alternativehypothesis:truemeanisnotequalto0

95percentconfidenceinterval:

63.158571.6415

sampleestimates:

meanofx

67.4

平均脈搏點估計為67.4,95%區(qū)間估計為63.158571.6415。

>t.test(x,alternative=Hless",mu=72)#做單樣本正態(tài)分布單側(cè)區(qū)間估計

OneSamplet-test

data:x

t=-2.4534,df=9,p-value=0.01828

alternativehypothesis:truemeanislessthan72

95percentconfidenceinterval:

-Inf70.83705

sampleestimates:

meanofx

67.4

p值小于0.05,拒絕原假設(shè),平均脈搏低于常人。

要點:t.test()函數(shù)的用法。本例為單樣本;可.做雙邊和單側(cè)檢驗。

Ex4.6

>x<-c(140,137,136,140,145,148,140,135,144,141);x

[1]140137136140145148140135144141

>y<-0(135,118,115,140,128,131,130,115,131,125);7

[1]135118115140128131130115131125

>t.test(x,y,var.equal=TRUE)

TwoSamplet-test

data:xandy

t=4.6287,df=18,p-value=0.0002087

alternativehypothesis:truedifferenceinmeansisnotequalto0

95percentconfidenceinterval:

7.5362620.06374

sampleestimates:

meanofxmeanofy

140.6126.8

期望差的95%置信區(qū)間為7.5362620.06374。

要點:t.test()可做兩正態(tài)樣本均值差估計。此例認(rèn)為兩樣本方差相等。

ps:我怎么覺得這題應(yīng)該用配對t檢驗?

Ex4.7

>x<-c(0.143,0.142,0.143,0.137)

>y<-0(0.140,0.142,0.136,0.138,0.140)

>t.test(x,y,var.equal=TRUE)

TwoSamplet-test

data:xandy

t=1.198,df=7,p-value=0.2699

alternativehypothesis:truedifferenceinmeansisnotequalto0

95percentconfidenceinterval:

-0.0019963510.006096351

sampleestimates:

meanofxmeanofy

0.141250.13920

期望差的95%的區(qū)間估計為-0.0019963510.006096351

Ex4.8

接Ex4.6

>var.test(x,y)

Ftesttocomparetwovariances

data:xandy

F=0.2353,numdf=9,denomdf=9,p-value=0.04229

alternativehypothesis:trueratioofvariancesisnotequalto1

95percentconfidenceinterval:

0.058452760.94743902

sampleestimates:

ratioofvariances

0.2353305

要點:var.test可做兩樣本方差比的估計?;诖私Y(jié)果可認(rèn)為方差不等。

因此,在Ex4.6中,計算期望差時應(yīng)該采取方差不等的參數(shù)。

>t.test(x,y)

WelchTwoSamplet-test

data:xandy

t=4.6287,df=13.014,p-value=0.0004712

alternativehypothesis:truedifferenceinmeansisnotequalto0

95percentconfidenceinterval:

7.35971320.240287

sampleestimates:

meanofxmeanofy

140.6126.8

期望差的95%置信區(qū)間為7.35971320.240287。

要點:t.test(x,y,var.equal=TRUE)做方差相等的兩正態(tài)樣本的均值差估計

t.test(x,y)做方差不等的兩正態(tài)樣本的均值差估計

Ex4.9

>x<-c(rep(0,7),rep(1,10),rep(2,12),rep(3,8),rep(4,3),rep(5,2))

>n<-length(x)

>tmp<-sd(x)/sqrt(n)*qnorm(1-0.05/2)

>mean(x)

[1]1.904762

>mean(x)-tmp;mean(x)+tmp

[1]1.494041

[1]2.315483

平均呼喚次數(shù)為1.9

0.95的置信區(qū)間為1.49,2,32

Ex4.10

>x<-c(1067,919,1196,785,1126,936,918,1156,920,948)

>t.test(x,alternative="greater")

OneSamplet-test

data:x

t=23.9693,df=9,p-value=9.148e-10

alternativehypothesis:truemeanisgreaterthan0

95percentconfidenceinterval:

920.8443Inf

sampleestimates:

meanofx

997.1

燈泡平均壽命置信度95%的單側(cè)置信下限為920.8443

要點:t.test()做單側(cè)置信區(qū)間估計

Ex5.1

>x<-c(220,188,162,230,145,160,238,188,247,113,126,245,164,231,

256,183,190,158,224,175)

>t.test(x,mu=225)

OneSamplet-test

data:x

t=-3.4783,df=19,p-value=0.002516

alternativehypothesis:truemeanisnotequalto225

95percentconfidenceinterval:

172.3827211.9173

sampleestimates:

meanofx

192.15

原假設(shè):油漆工人的血小板計數(shù)與正常成年男子無差異。

備擇假設(shè):油漆工人的血小板計數(shù)與正常成年男子有差異。

p值小于0.05,拒絕原假設(shè),認(rèn)為油漆工人的血小板計數(shù)與正常成年男子有差異。

上述檢驗是雙邊檢驗。也可采用單邊檢驗。備擇假設(shè):油漆工人的血小板計數(shù)小于正常成

年男子。|________________________________

>t.test(x,mu=225,alternative="less")

OneSamplet-test

data:x

t=-3.4783,df=19,p-value=0.001258

alternativehypothesis:truemeanislessthan225

95percentconfidenceinterval:

-Inf208.4806

sampleestimates:

meanofx

192.15

同樣可得出汕漆工人的血小板計數(shù)小于正常成年男子的結(jié)論。

Ex5.2

>pnorm(1000,mean(x),sd(x))

[1]0.5087941

>x

[1]1067919119678511269369181156920948

>pnorm(1000,mean(x),sd(x))

[1]0.5087941

x<=1000的概率為0.509,故x大于1000的概率為0.491.

要點:pnorm計算正態(tài)分布的分布函數(shù)。在R軟件中,計算值均為下分位點。

Ex5.3

>A<-c(113,120,138,120,100,118,138,123)

>B<-c(138,116,125,136,110,132,130,110)

>t.test(A,B,paired=TRUE)

Pairedt-test

data:AandB

t=-0.6513,df=7,p-value=0.5357

alternativehypothesis:truedifferenceinmeansisnotequalto0

95percentconfidenceinterval:

-15.628898.87889

sampleestimates:

meanofthedifferences

-3.375

p值大于0.05,接受原假設(shè),兩種方法治療無差異。

Ex5.4

(1)

正態(tài)性W檢驗:|

>x<-c(-0.7,-5.6,2,2.8,0.7,3.5,4,5.8,7.1,-0.5,2.5,-1.6,1.7,3,0.4,4.5,4.6,2.5,6,

-1.4)

>y<-c(3.7,6.5,5,5.2,0.8,0.2,0.6,3.4,6.6,-1.1,6,3.8,2,1.6,2,2.2,1.2,3.1,1.7,-2

)

>shapiro.test(x)

Shapiro-Wilknormalitytest

data:x

W=0.9699,p-value=0.7527

>shapiro.test(y)

Shapiro-Wilknormalitytest

data:y

W=0.971,p-value=0.7754

ks檢驗:

>ks.test(x,"pnorm",mean(x),sd(x))

One-sampleKolmogorov-Smirnovtest

data:x

D=0.1065,p-value=0.977

alternativehypothesis:two-sided

Warningmessage:

Inks.test(x,"pnorm**,mean(x),sd(x)):

cannotcomputecorrectp-valueswithties

>ks.test(y,"pnormn,mean(y),sd(y))

One-sampleKolmogorov-Smirnovtest

data:y

D=0.1197,p-value=0.9368

alternativehypothesis:two-sided

Warningmessage:

Inks.test(y,"pnorm*',mean(y),sd(y)):

cannotcomputecorrectp-valueswithties

pearson擬合優(yōu)度檢驗,以x為例。

>sort(x)

[1]-5.6-1.6-1.4-0.7-0.50.40.71.72.02.52.52.83.03.54.0

[16]4.54.65.86.07.1

>x1<-table(cut(x,br=c(-6,-3,0,3,6,9)))

>p<-pnorm(c(-3,0,3,6,9),mean(x),sd(x))

>P

[1]0.048947120.249900090.620022880.900758560.98828138

>p<-c(p[1],p[2]-p[1],p[3]-p[2],p[4]-p[3],1-p[4]);p

[1]0.048947120.200952980.370122780.280735680.09924144

>chisq.test(x1,p=p)

Chi-squaredtestforgivenprobabilities

data:x1

X-squared=0.5639,df=4,p-value=0.967

Warningmessage:

Inchisq.test(x1,p=p):Chi-squaredapproximationmaybeincorrect

p值為0.967,接受原假設(shè),x符合正態(tài)分布。

(2)

方差相同模型t檢驗:

>t.test(x,y,var.equal=TRUE)

TwoSamplet-test

data:xandy

t=-0.6419,df=38,p-value=0.5248

alternativehypothesis:truedifferenceinmeansisnotequalto0

95percentconfidenceinterval:

-2.3261791.206179

sampleestimates:

meanofxmeanofy

2.0652.625

方差不同模型t檢驗:

>t.test(x,y)

WelchTwoSamplet-test

data:xandy

t=-0.6419,df=36.086,p-value=0.525

alternativehypothesis:truedifferenceinmeansisnotequalto0

95percentconfidenceinterval:

-2.329261.20926

sampleestimates:

meanofxmeanofy

2.0652.625

配對t檢驗:

>t.test(x,y,paired=TRUE)

Pairedt-test

data:xandy

t=-0.6464,df=19,p-value=0.5257

alternativehypothesis:truedifferenceinmeansisnotequalto0

95percentconfidenceinterval:

-2.3731461.253146

sampleestimates:

meanofthedifferences

-0.56

三種檢驗的結(jié)果都顯示兩組數(shù)據(jù)均值無差異。

(3)

方差檢驗:

>var.test(x,y)

Ftesttocomparetwovariances

data:xandy

F=1.5984,numdf=19,denomdf=19,p-value=0.3153

alternativehypothesis:trueratioofvariancesisnotequalto1

95percentconfidenceinterval:

0.63265054.0381795

sampleestimates:

ratioofvariances

1.598361

接受原假設(shè),兩組數(shù)據(jù)方差相同。

Ex5.5

>a<c(126,125,136,128,123,138,142,116,110,108,115,140)

>b<-c(162,172,177,170,175,152,157,159,160,162)

正態(tài)性檢驗,采用ks檢驗:

>ks.test(a,Hpnorm",mean(a),sd(a))

One-sampleKolmogorov-Smirnovtest

data:a

D=0.1464,p-value=0.9266

alternativehypothesis:two-sided

,,

>ks.test(b,'pnorm',mean(b)3sd(b))

One-sampleKolmogorov-Smirnovtest

data:b

D=0.2222,p-value=0.707

alternativehypothesis:two-sided

Warningmessage:

Inks.test(b,npnormn,mean(b),sd(b)):

cannotcomputecorrectp-valueswithties

a和b都服從正態(tài)分布。

方差齊性檢驗:

>var.test(a,b)

Ftesttocomparetwovariances

data:aandb

F=1.9646,numdf=11,denomdf=9,p-value=0.3200

alternativehypothesis:trueratioofvariancesisnotequalto1

95percentconfidenceinterval:

0.50219437.0488630

sampleestimates:

ratioofvariances

1.964622

可認(rèn)為a和b的方差相同。

選用方差相同模型t檢驗:

>t.test(a,b,var.equal=TRUE)

TwoSamplet-test

data:aandb

t=-8.8148,df=20,p-value=2.524e-08

alternativehypothesis:truedifferenceinmeansisnotequalto0

95percentconfidenceinterval:

-48.24975-29.78358

sampleestimates:

meanofxmeanofy

125.5833164.6000

可.認(rèn)為兩者有差別。

Ex5.6

二項分布總體的假設(shè)檢驗:

>binom.test(57,400,p=0.147)

Exactbinomialtest

data:57and400

numberofsuccesses=57,numberoftrials=400,p-value=0.8876

alternativehypothesis:trueprobabilityofsuccessisnotequalto0.147

95percentconfidenceinterval:

0.10974770.1806511

sampleestimates:

probabilityofsuccess

0.1425

P值>0.05,故接受原假設(shè),表示調(diào)查結(jié)果支持該市老年人口的看法

Ex5.7

二項分布總體的假設(shè)檢驗:|___________________________

>binom.test(178,328,p=0.5,alternative="greater*')

Exactbinomialtest

data:178and328

numberofsuccesses=178,numberoftrials=328,p-value=0.06794

alternativehypothesis:trueprobabilityofsuccessisgreaterthan0.5

95percentconfidenceinterval:

0.49576161.0000000

sampleestimates:

probabilityofsuccess

0.5426829

不能認(rèn)為這種處理能增加母雞的比例。

Ex5.8

利用pearson卡方檢驗是否符合特定分布:

>chisq.test(c(315,101,108,32)^=0(9,3,3,1)/16)

Chi-squaredtestforgivenprobabilities

data:c(315,101,108,32)

X-squared=0.47,df=3,p-value=0.9254

接受原假設(shè),符合自由組合定律。

Ex5.9

利用pearson卡方檢驗是否符合泊松分布:

>n<-length(z)

>y<-c(92,68,28,11,1,0)

>x<-0:5

>q<-ppois(x,mean(rep(x,y)));n<-length(y)

>P[1]<-q[1];P[n]=1-q[n-1]

>chisq.test(y,p=p)

Chi-squaredtestforgivenprobabilities

data:y

X-squared=2.1596,df=5,p-value=0.8267

Warningmessage:

Inchisq.test(y,p=p):Chi-squaredapproximationmaybeincorrect

重新分組,合并頻數(shù)小于5的組:

>z<-c(92,68,28,12)

>n<-length(z);p<-p[1:n-1];p[n]<-1-q[n-1]

>chisq.test(z,p=p)

Chi-squaredtestforgivenprobabilities

data:z

X-squared=0.9113,df=3,p-value=0.8227

可認(rèn)為數(shù)據(jù)服從泊松分布。

Ex5.10

ks檢驗兩個分布是否相同:

>x<-c(2.36,3.14,752,3.48,2.76,5.43,6.54,7.41)

>y<-c(4.38,4.25,6.53,3.28,7.21,6.55)

>ks.test(x,y)

Two-sampleKolmogorov-Smirnovtest

data:xandy

D=0.375,p-value=0.6374

alternativehypothesis:two-sided

Ex5.11

列聯(lián)數(shù)據(jù)的獨立性檢驗:

>x<-c(358,2492,229,2745)

>dim(x)<-c(2,2)

>chisq.test(x)

Pearson'sChi-squaredtestwithYates*continuitycorrection

data:x

X-squared=37.4143,df=1,p-value=9.552e-10

P值v0.05,拒絕原假設(shè),有影響。

Ex5.12

列聯(lián)數(shù)據(jù)的獨立性檢驗:

>y

>chisq.test(y)

Pearson'sChi-squaredtest

data:y

X-squared=40.401,df=6,p-value=3.799e-07

P值<0.05,拒絕原假設(shè),不獨立,有關(guān)系。

Ex5.13

因有的格子的頻數(shù)小于5,故采用fiser確切概率法檢驗獨立性。

>fisher.test(x)

Fisher'sExactTestforCountData

data:x

p-value=0.6372

alternativehypothesis:trueoddsratioisnotequalto1

95percentconfidenceinterval:

0.046243825.13272210

sampleestimates:

oddsratio

0.521271

p值大于0.05,兩變量獨立,兩種工藝對產(chǎn)品的質(zhì)量沒有影響。

Ex5.14

由于是在相同個體上的兩次試驗,故采用McNemar檢驗。

>mcnemar.test(x)

McNemar'sChi-squaredtest

data:x

McNemar'schi-squared=2.8561,df=3,p-value=0.4144

p值大于0.05,不能認(rèn)定兩種方法測定結(jié)果不同。

Ex5.15

符號檢驗量_________

H0:中位數(shù)>=14.6;

H1:中位數(shù)<14.6

>x<-c(13.32,13.06,14.02,11.86,13.58,13.77,13.51,14.42,14.44,15.43)

>binom.test(sum(x)>14.6,length(x),a『T)

Exactbinomialtest

data:sum(x)>14.6andlength(x)

numberofsuccesses=1,numberoftrials=10,p-value=0.01074

alternativehypothesis:trueprobabilityofsuccessislessthan0.5

95percentconfidenceinterval:

0.00000000.3941633

sampleestimates:

probabilityofsuccess

0.1

拒絕原假設(shè),中位數(shù)小于14.6

Wilcoxon符號秩檢驗:

>wilcox.test(x,mu=14.6,al=nlH,exact=F)

Wilcoxonsignedranktestwithcontinuitycorrection

data:x

V=4.5,p-value=0.01087

alternativehypothesis:truelocationislessthan14.6

拒絕原假設(shè),中位數(shù)小于14.6

Ex5.16

符號檢驗法:

>

x<-c(48,33,37.5,48,42.5,40,42,36,11.3,22,36,27.3,14.2,32.1,52,38,17.3,20,

21,46.1)

y<-c(37,41,23.4,17,31.5,40,31,36,5.7,11.5,21,6.1,26.5,21.3,44.5,28,22.6,2

0,11,22.3)

>binom.test(sum(x>y)Jength(x))

Exactbinomialtest

data:sum(x>y)andlength(x)

numberofsuccesses=14,numberoftrials=20,p-value=0.1153

alternativehypothesis:trueprobabilityofsuccessisnotequalto0.5

95percentconfidenceinterval:

0.45721080.8810684

sampleestimates:

probabilityofsuccess

0.7

接受原假設(shè),無差別。

Wilcoxon符號秩檢驗:

>wilcox.test(x,y,paired=TRUE,exact=FALSE)

Wilcoxonsignedranktestwithcontinuitycorrection

data:xandy

V=136,p-value=0.005191

alternativehypothesis:truelocationshiftisnotequalto0

拒絕原假設(shè),有差別。

Wilcoxon秩和檢驗:

>wilcox.test(x,y,exact=FALSE)

Wilcoxonranksumtestwithcontinuitycorrection

data:xandy

W=274.5,p-value=0.04524

alternativehypothesis:truelocationshiftisnotequalto0

拒絕原假設(shè),有差別。

正態(tài)性檢驗:

>ks.test(x,"pnorm",mean(x),sd(x))

One-sampleKolmogorov-Smirnovtest

data:x

D=0.1407,p-value=0.8235

alternativehypothesis:two-sided

Warningmessage:

Inks.test(x,Mpnormn,mean(x),sd(x)):

cannotcomputecorrectp-valueswithties

,H

>ks.test(yJ'pnorm,mean(y),sd(y))

One-sampleKolmogorov-Smirnovtest

data:y

D=0.1014,p-value=0.973

alternativehypothesis:two-sided

兩組數(shù)據(jù)均服從正態(tài)分布。

方差齊性檢驗:

>var.test(x,y)

Ftesttocomparetwovariances

data:xandy

F=1.1406,numdf=19,denomdf=19,p-value=0.7772

alternativehypothesis:trueratioofvariancesisnotequalto1

95percentconfidenceinterval:

0.45147882.8817689

sampleestimates:

ratioofvariances

1.140639

可認(rèn)為兩組數(shù)據(jù)方差相同。

綜上,該數(shù)據(jù)可做t檢驗。

t檢驗:

>t.test(x,y,var.equal=TRUE)

TwoSamplet-test

data:xandy

t=2.2428,df=38,p-value=0.03082

alternativehypothesis:truedifferenceinmeansisnotequalto0

95percentconfidenceinterval:

0.81255315.877447

sampleestimates:

meanofxmeanofy

33.21524.870

拒絕原假設(shè),有差別。|

綜上所述,Wilcoxon符號秩檢驗的差異檢出能力最強,符號檢驗的差異檢出最弱。

ExiH

spearman秩相關(guān)檢驗:

>x<-0(24,17,20,41,52,23,46,18,15,20)

>y<-c(8,1,4,7,9,5,10,3,2,6)

>cor.test(x,y,method=nspearmann,exact=F)

Spearman'srankcorrelationrho

data:xandy

S=9.5282,p-value=4.536e-05

alternativehypothesis:truerhoisnotequalto0

sampleestimates:

rho

0.9422536

kendall秩相關(guān)檢驗:

>cor.test(x,y,method=''kendall",exact=F)

KendalTsrankcorrelationtau

data:xandy

z=3.2329,p-value=0.001225

alternativehypothesis:truetauisnotequalto0

sampleestimates:

tau

0.8090398

二者有關(guān)系,呈正相關(guān)。

Ex5.18

>x<-rep(1:5,c(0,1,9,7,3));y<-rep(1:5,c(2,2,11,4,1))

>wilcox.test(x,y,exact=F)

Wilcoxonranksumtestwithcontinuitycorrection

data:xandy

W=266,p-value=0.05509

alternativehypothesis:truelocationshiftisnotequalto0

p值大于0.05,不能拒絕原假設(shè),尚不能認(rèn)為新方法的療效顯著優(yōu)于原療法。

Ex6.1

(1)

>x<-c(5.1,3.5,7.1,6.2,8.8,7.8,4.5,5.6,8.0,6.4)

>y<-c(1907,1287,2700,2373,3260,3000,1947,2273,3113,2493)

>plot(x,y)

z

o

s

?工

o

LT'

45689

山此判斷,丫和X有線性關(guān)系。

(2)

>lm.sol<-lm(y~1+x)

>summary(lm.sol)

Call:

lm(formula=y~1+x)

Residuals:

Min1QMedian3QMax

-128.591-70.978-3.72749.263167.228

Coefficients:

EstimateStd.ErrortvaluePr(>11|)

(Intercept)140.95125.111.1270.293

x364.1819.2618.9086.33e-08***

Signif.codes:0****'0.001***'0.010.050.1'11

Residualstandarderror:96.42on8degreesoffreedom

MultipleR-squared:0.9781,AdjustedR-squared:0.9754

F-statistic:357.5on1and8DRp-value:6.33e-08

回歸方程為Y=140.95+364.18X

(3)

01項很顯著,但常數(shù)項00不顯著。

回歸方程很顯著。

(4)

>new<-data.frame(x=7)

>Im.pred<-predict(Im.sol,new,interval"prediction*')

>Im.pred

fitIwrupr

12690.2272454.9712925.484

故丫⑺;2690.227,[2454.971,2925.484]

Ex6.2

(D

>pho<-data.frame(x1<-

c(0.4,0.4,3.1,0.6,4.7,1.7,9.4,10.1,11.6,12.6,10.9,23.1,23.1,21.6,23.1,1.9,26

.8,29.9),x2<-c(52,34,19,34,24,65,44,31,29,58,37,46,50,44,56,36,58,51),

0(158,163,37,157,59,123,46,117,173,112,111,114,134,73,168,143,202,124),

y<-0(64,60,71,61,54,77,81,93,93,51,76,96,77,93,95,54,168,99))

>lm.sol<-lm(y?x1+x2+x3,data=pho)

>summary(lm.sol)

Call:

lm(formula=y~x1+x2+x3,data=pho)

Residuals:

Min1QMedian3QMax

-27.575-11.160-2.79911.57448.808

Coefficients:

EstimateStd.ErrortvaluePr(>11|)

(Intercept)44.929018.34082.4500.02806*

x11.80330.52903.4090.00424**

x2-0.13370.4440-0.3010.76771

x30.16680.11411.4620.16573

Signif.c

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論