![2024微軟人工智能系統(tǒng)強(qiáng)化學(xué)習(xí)_第1頁](http://file4.renrendoc.com/view5/M01/34/2B/wKhkGGYt-diAEkGcAACPwF3Rmfs668.jpg)
![2024微軟人工智能系統(tǒng)強(qiáng)化學(xué)習(xí)_第2頁](http://file4.renrendoc.com/view5/M01/34/2B/wKhkGGYt-diAEkGcAACPwF3Rmfs6682.jpg)
![2024微軟人工智能系統(tǒng)強(qiáng)化學(xué)習(xí)_第3頁](http://file4.renrendoc.com/view5/M01/34/2B/wKhkGGYt-diAEkGcAACPwF3Rmfs6683.jpg)
![2024微軟人工智能系統(tǒng)強(qiáng)化學(xué)習(xí)_第4頁](http://file4.renrendoc.com/view5/M01/34/2B/wKhkGGYt-diAEkGcAACPwF3Rmfs6684.jpg)
![2024微軟人工智能系統(tǒng)強(qiáng)化學(xué)習(xí)_第5頁](http://file4.renrendoc.com/view5/M01/34/2B/wKhkGGYt-diAEkGcAACPwF3Rmfs6685.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1 signal
observation&reward
RealworldenvironmentAgent historyinfo
simulatorEachtimesteptAgentanaction????Worldupdatesgivenactionat,emitsobservationandAgentreceivesobservationandUseexperiencetoguidefuturedecisions(exploit)signal
observation&reward
RealworldenvironmentAgent historyinfo
simulatorHistory???=(??1,...,????,????,AgentchoosesactionbasedonhistoryisinformationassumedtodeterminewhathappensnextFunctionhistory=(???)Stateisifandonlyif p(????+1|,????)=p(????+1|???,????)Goalselectactionstomaximizetotalexpectedfuturerewardbalancingimmediate&long-termrewardsπdetermineshowtheagentchoosesactionsDeterministicpolicyStochasticpolicyfunctionexpecteddiscountedsumfuturerewardsunderapolicyπ initializeenvPolicymodelinitializeenvPolicymodelinitializepolicyPolicyinferenceinitializepolicyRolloutdataRolloutdataPolicyupdateUpdatepolicyUpdatepolicyHessel,Matteo,etal."Rainbow:Combiningimprovementsindeepreinforcementlearning."——給PPO帶來真正的性能上提升以及將policy約束在trustregion內(nèi)的效果,都不是通過PPO論文中提出的對新的policy和原policy的比值進(jìn)行裁切(clip)帶來的,而是通過code-level的一些技巧帶來的。Engstrom,Logan,etal."Implementationmattersindeeppolicygradients:AcasestudyonPPOandTRPO."Liang,Eric,etal."Rayrllib:Acomposableandscalablereinforcementlearninglibrary."Liang,Eric,etal."Rayrllib:Acomposableandscalablereinforcementlearninglibrary."新算法新算法新架構(gòu) 難以復(fù)用的強(qiáng)化學(xué)習(xí)代碼
可擴(kuò)展性的強(qiáng)化學(xué)習(xí)框架 TrainingDataMLModelTrainingDataMLModelTrainingsignalθ
observation&reward
RealworldenvironmentAgent historyinfo
simulator面臨的問題面臨的問題新的需求Horgan,Dan,etal."Distributedprioritizedexperiencereplay."可能傳輸大量的數(shù)據(jù)可能傳輸大量的數(shù)據(jù)GPUCPU面臨的問題面臨的問題可能的解決方案 通用的RL算法針對Env開發(fā)支持分布式Star數(shù)目RepoACME+Reverb2.1k/deepmind/acmeELF2k/facebookresearch/ELFRay+RLlib16.4k/ray-project/rayGym24.5k/openai/gymBaselines11.6k/openai/baselinesTorchBeast553/facebookresearch/torchbeastSeedRL617/google-research/seed_rlTianshuo?3.2k/thu-ml/tianshouKeras-RL5.1k/keras-rl/keras-rlRayisafastandsimpleframeworkforbuildingandrunningdistributedapplications./ray-project/ray Rayisafastandsimpleframeworkforbuildingandrunningdistributedapplications.AprocessexecutingtheuserprogramAstatelessprocessthatexecutesremotefunctionsinvokedbyadriverAstatefulprocessthatexecutesDistributedobjectIn-memorydistributedstoragetostoretheinputs/outputs,orstatelesscomputation.ImplementtheobjectstoreviasharedmemoryUseApacheArrowasdataformatsDistributedschedulerSubmittedfirsttolocalschedulerGlobalschedulerconsiderseachloadandconstraintstoschedulingdecisionsGlobalControlAkey-valuestorewithpub-subfunctionalityRLlibisanopen-sourcelibraryforreinforcementlearningthatoffersbothhighscalabilityandaunifiedAPIforavarietyofapplications.RayRayRLlib/ray-project/ray/tree/master/rllib distributedschedulerisanaturalfitforthehierarchicalcontrolmodel,asnestedcomputationcanbeimplementedinRaywithnocentraltaskschedulingbottleneck.Hierarchicalcontrol Actors/Workers RunscriptRemotedecoratorforruninremote InitrayRemotedecoratorforruninremoteInitrayExecutethetrainerandactorinremoteExecutethetrainerandactorinremoteStartthreadforasyncStartthreadforasynctrainingsignal
observation&reward
RealworldenvironmentAgent historyinfo
simulatorPolicyGraphPolicyModelPolicyOptimizerPolicyGraphPolicyModelPolicyOptimizerThepolicyoptimizerisresponsiblefortheperformance-criticaltasksofdistributedsampling,parameterupdates,andmanagingPolicyGraphPolicyModelPolicyOptimizerPseudocodeforfourRLlibpolicyoptimizerstepmethods.Eachstep()operatesalocalpolicygraphandarrayofremoteevaluatorreplicas. Serializationanddeserializationarebottlenecksinparallelanddistributedcomputing,especiallyinmachinelearningapplicationswithlargeobjectsandlargequantitiesofdata.Goalsefficientwithlargenumericaldata(e.g.NumpyandPandasdataframes)AsasPicklePythontypesCompatiblewithsharedmemory(allowingmultipleprocessestousethesamewithoutcopyingit)Deserializationshouldbeextremelylanguageindependent Makingdeserializationfastisimportant.AnobjectmaybeserializedonceandthendeserializedmanytimesAcommonpatternisformanyobjectstobeserializedinparallelandthenaggregatedanddeserializedoneatatimeonasingleworkermakingdeserializationthebottleneckDeserializationisfastandbarelyvisibleUsingonlytheschema,cancomputetheoffsetseachvalueinthedatablobwithoutscanningthroughthedatablob(unlikePickle,thisiswhatenablesfastdeserialization)copyingorotherwiseconvertinglargearraysandothervaluesduringdeserializat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代辦公環(huán)境下的健康與舒適
- 未來的工作環(huán)境科技與舒適性的平衡
- 現(xiàn)代辦公環(huán)境下的智能配送技術(shù)應(yīng)用實(shí)例
- 2024秋七年級數(shù)學(xué)上冊 第4章 一元一次方程4.2 解一元一次方程 3用合并同類項(xiàng)法解方程說課稿(新版)蘇科版001
- Unit 4 History And Traditions Reading for Writing 說課稿-2023-2024學(xué)年高中英語人教版(2019)必修第二冊
- Unit 4 Friends Forever Understanding ideas click for a friend 說課稿-2024-2025學(xué)年高中英語外研版必修第一冊
- 2024年五年級英語下冊 Unit 2 How do you come to school第1課時(shí)說課稿 譯林牛津版
- 6 魯濱遜漂流記(節(jié)選)(說課稿)-2023-2024學(xué)年語文六年級下冊統(tǒng)編版
- 16《夏天里的成長》(說課稿)2024-2025學(xué)年部編版語文六年級上冊001
- Unit 2 Wildlife Protection Reading and Thinking Language Focus 說課稿-2024-2025學(xué)年高一上學(xué)期英語人教版(2019)必修第二冊001
- 2022屆高三體育特長生家長會(huì)
- 不對外供貨協(xié)議
- 2024屆高考作文主題訓(xùn)練:時(shí)評類(含解析)
- 260噸汽車吊地基承載力驗(yàn)算
- 公司新員工三級安全教育培訓(xùn)(車間級)
- 北師大版高三數(shù)學(xué)選修4-6初等數(shù)論初步全冊課件【完整版】
- 老子道德經(jīng)全文講解學(xué)習(xí)課件
- 企業(yè)更名通知函
- 經(jīng)大量臨床實(shí)驗(yàn)證明,空氣負(fù)離子能有效治療心腦血管疾病
- GB/T 12618-1990開口型扁圓頭抽芯鉚釘
- GA/T 458-2021居民身份證質(zhì)量要求
評論
0/150
提交評論