2023-2024學(xué)年甘肅天水一中高三第二次模擬考試數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年甘肅天水一中高三第二次模擬考試數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年甘肅天水一中高三第二次模擬考試數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年甘肅天水一中高三第二次模擬考試數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年甘肅天水一中高三第二次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年甘肅天水一中高三第二次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,,則向量與的夾角為()A. B. C. D.2.展開項(xiàng)中的常數(shù)項(xiàng)為A.1 B.11 C.-19 D.513.設(shè),,則()A. B.C. D.4.函數(shù)的最大值為,最小正周期為,則有序數(shù)對為()A. B. C. D.5.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.6.函數(shù)的最小正周期是,則其圖象向左平移個(gè)單位長度后得到的函數(shù)的一條對稱軸是()A. B. C. D.7.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”意思為有一個(gè)人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達(dá)目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里8.己知函數(shù)的圖象與直線恰有四個(gè)公共點(diǎn),其中,則()A. B.0 C.1 D.9.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長為1,圖中復(fù)平面內(nèi)點(diǎn)表示復(fù)數(shù),則表示復(fù)數(shù)的點(diǎn)是()A.E B.F C.G D.H10.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.1211.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動,則乙、丙兩人恰好參加同一項(xiàng)活動的概率為A. B. C. D.12.已知函數(shù)(),若函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平面四邊形中,點(diǎn),是橢圓短軸的兩個(gè)端點(diǎn),點(diǎn)在橢圓上,,記和的面積分別為,,則______.14.如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.15.已知數(shù)列是等比數(shù)列,,則__________.16.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知分別是橢圓的左、右焦點(diǎn),直線與交于兩點(diǎn),,且.(1)求的方程;(2)已知點(diǎn)是上的任意一點(diǎn),不經(jīng)過原點(diǎn)的直線與交于兩點(diǎn),直線的斜率都存在,且,求的值.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.19.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點(diǎn),求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.20.(12分)如圖,已知橢圓經(jīng)過點(diǎn),且離心率,過右焦點(diǎn)且不與坐標(biāo)軸垂直的直線與橢圓相交于兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右頂點(diǎn)為,線段的中點(diǎn)為,記直線的斜率分別為,求證:為定值.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:①點(diǎn)的極角;②面積的取值范圍.22.(10分)設(shè),,,.(1)若的最小值為4,求的值;(2)若,證明:或.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

求出,進(jìn)而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時(shí),通常代入公式進(jìn)行計(jì)算.2、B【解析】

展開式中的每一項(xiàng)是由每個(gè)括號中各出一項(xiàng)組成的,所以可分成三種情況.【詳解】展開式中的項(xiàng)為常數(shù)項(xiàng),有3種情況:(1)5個(gè)括號都出1,即;(2)兩個(gè)括號出,兩個(gè)括號出,一個(gè)括號出1,即;(3)一個(gè)括號出,一個(gè)括號出,三個(gè)括號出1,即;所以展開項(xiàng)中的常數(shù)項(xiàng)為,故選B.【點(diǎn)睛】本題考查二項(xiàng)式定理知識的生成過程,考查定理的本質(zhì),即展開式中每一項(xiàng)是由每個(gè)括號各出一項(xiàng)相乘組合而成的.3、D【解析】

由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因?yàn)?,,則,且,所以,,又,即,則,即,故選:D.【點(diǎn)睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.4、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B5、D【解析】

設(shè)圓錐的母線長為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.6、D【解析】

由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當(dāng)時(shí),.故選D.【點(diǎn)睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.7、B【解析】

人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,計(jì)算,代入得到答案.【詳解】由題意可知此人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,則,解得,從而可得,故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.8、A【解析】

先將函數(shù)解析式化簡為,結(jié)合題意可求得切點(diǎn)及其范圍,根據(jù)導(dǎo)數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個(gè)公共點(diǎn),結(jié)合圖象知直線與函數(shù)相切于,,因?yàn)椋?,所?故選:A.【點(diǎn)睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,由交點(diǎn)及導(dǎo)數(shù)的幾何意義求函數(shù)值,屬于難題.9、C【解析】

由于在復(fù)平面內(nèi)點(diǎn)的坐標(biāo)為,所以,然后將代入化簡后可找到其對應(yīng)的點(diǎn).【詳解】由,所以,對應(yīng)點(diǎn).故選:C【點(diǎn)睛】此題考查的是復(fù)數(shù)與復(fù)平面內(nèi)點(diǎn)的對就關(guān)系,復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題.10、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來,繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.11、B【解析】

求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動的基本事件個(gè)數(shù)為,利用古典概型及其概率的計(jì)算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動的基本事件個(gè)數(shù)為,所以乙丙兩人恰好參加同一項(xiàng)活動的概率為,故選B.【點(diǎn)睛】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計(jì)算問題,其中解答中合理應(yīng)用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12、A【解析】

分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個(gè)零點(diǎn),等價(jià)于與有三個(gè)交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時(shí)與有兩個(gè)交點(diǎn),故只需當(dāng)時(shí),與有一個(gè)交點(diǎn)即可.若當(dāng)時(shí),時(shí),顯然??=??(??)與??=4|??|有一個(gè)交點(diǎn)??,故滿足題意;時(shí),顯然??=??(??)與??=4|??|沒有交點(diǎn),故不滿足題意;時(shí),顯然??=??(??)與??=4|??|也沒有交點(diǎn),故不滿足題意;時(shí),顯然與有一個(gè)交點(diǎn),故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

依題意易得A、B、C、D四點(diǎn)共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計(jì)算比值即可.【詳解】因?yàn)?,所以A、B、C、D四點(diǎn)共圓,直徑為,又A、C關(guān)于x軸對稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點(diǎn)是E,所以D的橫坐標(biāo)為,故.故答案為:.【點(diǎn)睛】本題考查橢圓中的四點(diǎn)共圓及三角形面積之比的問題,考查學(xué)生基本計(jì)算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.14、【解析】

由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進(jìn)而可寫出半球的半徑與四棱錐體積的關(guān)系,進(jìn)而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.15、【解析】

根據(jù)等比數(shù)列通項(xiàng)公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量計(jì)算,屬于基礎(chǔ)題.16、(或?qū)懗?【解析】試題分析:設(shè),取中點(diǎn)則,因此,所以,因?yàn)樵趩握{(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點(diǎn):函數(shù)最值,函數(shù)單調(diào)區(qū)間三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)不妨設(shè),,計(jì)算得到,根據(jù)面積得到,計(jì)算得到答案.(2)設(shè),,,聯(lián)立方程利用韋達(dá)定理得到,,代入化簡計(jì)算得到答案.【詳解】(1)由題意不妨設(shè),,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設(shè),,,則.∵,∴,設(shè)直線的方程為,聯(lián)立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【點(diǎn)睛】本題考查了橢圓方程,定值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18、(1);(2)【解析】

(1)分類討論去絕對值號,即可求解;(2)原不等式可轉(zhuǎn)化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時(shí)成立,可得的最小值,即可求解.【詳解】(1)①當(dāng)時(shí),不等式可化為,得,無解;②當(dāng)-2≤x≤1時(shí),不等式可化為得x>0,故0<x≤1;③當(dāng)x>1時(shí),不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當(dāng)時(shí),又當(dāng)時(shí),取得最小值,且又所以當(dāng)時(shí),與同時(shí)取得最小值.所以所以,即實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了含絕對值不等式的解法,分類討論,函數(shù)的最值,屬于中檔題.19、(1)見解析(2)【解析】試題分析:(1)第(1)問,轉(zhuǎn)化成證明平面,再轉(zhuǎn)化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標(biāo)系,求出二面角的余弦值.試題解析:(1)連接,因?yàn)樗倪呅螢榱庑危?因?yàn)槠矫嫫矫?,平面平面,平面,,所以平?又平面,所以.因?yàn)?,所?因?yàn)?,所以平?因?yàn)榉謩e為,的中點(diǎn),所以,所以平面(2)設(shè),由(1)得平面.由,,得,.過點(diǎn)作,與的延長線交于點(diǎn),取的中點(diǎn),連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因?yàn)闉槠叫兴倪呅?,所以,所以平?又因?yàn)?,所以平?因?yàn)?,所以平面平?由(1),得平面,所以平面,所以.因?yàn)?,所以平面,所以是與平面所成角.因?yàn)?,,所以平面,平面,因?yàn)椋云矫嫫矫?所以,,解得.在梯形中,易證,分別以,,的正方向?yàn)檩S,軸,軸的正方向建立空間直角坐標(biāo)系.則,,,,,,由,及,得,所以,,.設(shè)平面的一個(gè)法向量為,由得令,得m=(3,1,2)設(shè)平面的一個(gè)法向量為,由得令,得.所以又因?yàn)槎娼鞘氢g角,所以二面角的余弦值是.20、(1);(2)詳見解析.【解析】

(1)由橢圓離心率、系數(shù)關(guān)系和已知點(diǎn)坐標(biāo)構(gòu)建方程組,求得,代入標(biāo)準(zhǔn)方程中即可;(2)依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),,通過聯(lián)立直線方程與橢圓方程化簡整理和中點(diǎn)的坐標(biāo)表示用含k的表達(dá)式表示,,進(jìn)而表示;由韋達(dá)定理表示根與系數(shù)的關(guān)系進(jìn)而表示用含k的表達(dá)式表示,最后做比即得證.【詳解】(1)設(shè)橢圓的焦距為,則,即,所以.依題意,,即,解得,所以,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明:依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),.與橢圓聯(lián)立整理得,故所以,,所以.又,所以為定值,得證.【點(diǎn)睛】本題考查由離心率求橢圓的標(biāo)準(zhǔn)方程,還考查了橢圓中的定值問題,屬于較難題.21、(1)曲線為圓心在原點(diǎn),半徑為2的圓.的極坐標(biāo)方程為(2)①②【解析】

(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對應(yīng)的曲線,并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)①將的極角代入直線的極坐標(biāo)方程,由此求得點(diǎn)的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進(jìn)而求得,從而求得點(diǎn)的極角.②解法一:利用曲線的參數(shù)方程,求得曲線上的點(diǎn)到直線的距離的表達(dá)式,結(jié)合三角函數(shù)的知識求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓的幾何性質(zhì)求得圓上的點(diǎn)到直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論