2023-2024學年廣東省梅州市富力足球學校高三(最后沖刺)數(shù)學試卷含解析_第1頁
2023-2024學年廣東省梅州市富力足球學校高三(最后沖刺)數(shù)學試卷含解析_第2頁
2023-2024學年廣東省梅州市富力足球學校高三(最后沖刺)數(shù)學試卷含解析_第3頁
2023-2024學年廣東省梅州市富力足球學校高三(最后沖刺)數(shù)學試卷含解析_第4頁
2023-2024學年廣東省梅州市富力足球學校高三(最后沖刺)數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣東省梅州市富力足球學校高三(最后沖刺)數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.2.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.3.函數(shù)的單調遞增區(qū)間是()A. B. C. D.4.如圖是來自古希臘數(shù)學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.5.已知,,則()A. B. C. D.6.集合,則()A. B. C. D.7.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.若函數(shù)在時取得最小值,則()A. B. C. D.9.已知函數(shù),則的最小值為()A. B. C. D.10.函數(shù)的大致圖像為()A. B.C. D.11.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.12.已知復數(shù)和復數(shù),則為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為_________.14.已知向量,且,則實數(shù)的值是__________.15.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個不等式應該為__________.16.在中,已知,,則A的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結PC,PB構成一個四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.18.(12分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,問張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學期望.19.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現(xiàn)沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.20.(12分)貧困人口全面脫貧是全面建成小康社會的標志性指標.黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰(zhàn),建立解決相對貧困的長效機制”對當前和下一個階段的扶貧工作進行了前瞻性的部署,即2020年要通過精準扶貧全面消除絕對貧困,實現(xiàn)全面建成小康社會的奮斗目標.為了響應黨的號召,某市對口某貧困鄉(xiāng)鎮(zhèn)開展扶貧工作.對某種農(nóng)產(chǎn)品加工生產(chǎn)銷售進行指導,經(jīng)調查知,在一個銷售季度內,每售出一噸該產(chǎn)品獲利5萬元,未售出的商品,每噸虧損2萬元.經(jīng)統(tǒng)計,兩市場以往100個銷售周期該產(chǎn)品的市場需求量的頻數(shù)分布如下表:市場:需求量(噸)90100110頻數(shù)205030市場:需求量(噸)90100110頻數(shù)106030把市場需求量的頻率視為需求量的概率,設該廠在下個銷售周期內生產(chǎn)噸該產(chǎn)品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據(jù),確定下個銷售周期內生產(chǎn)量噸還是噸?并說明理由.21.(12分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設,過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.22.(10分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數(shù)f(x)的單調區(qū)間;(2)設g(x)=f(x)1,若函數(shù)g(x)在上有兩個零點,求實數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

畫出約束條件的可行域,利用目標函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.2、D【解析】

設出的坐標為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結果.【詳解】設,則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關點法;④參數(shù)法;⑤待定系數(shù)法3、D【解析】

利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調性,并采用整體法,可得結果.【詳解】因為,由,解得,即函數(shù)的增區(qū)間為,所以當時,增區(qū)間的一個子集為.故選D.【點睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調遞增區(qū)間,重點在于把握正弦函數(shù)的單調性,同時對于整體法的應用,使問題化繁為簡,難度較易.4、D【解析】

由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結合同角三角函數(shù)的基本關系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數(shù)的基本關系,考查了二倍角公式.本題的關鍵是由面積比求出角的正切值.5、D【解析】

分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.6、D【解析】

利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎題.7、A【解析】

利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質,充分條件,必要條件的定義和判斷方法,屬于基礎題.8、D【解析】

利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應用,屬于基礎題.9、C【解析】

利用三角恒等變換化簡三角函數(shù)為標準正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點睛】本題考查利用降冪擴角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎題.10、D【解析】

通過取特殊值逐項排除即可得到正確結果.【詳解】函數(shù)的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.11、D【解析】

設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.12、C【解析】

利用復數(shù)的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數(shù)的三角形式的乘法運算法則是解題的關鍵,復數(shù)問題高考必考,常見考點有:點坐標和復數(shù)的對應關系,點的象限和復數(shù)的對應關系,復數(shù)的加減乘除運算,復數(shù)的模長的計算.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】14、【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點睛:由向量的數(shù)乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.15、【解析】

根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應用,分析不等式的變化規(guī)律.16、【解析】

根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,,即,,,則,,,,則.故答案為:【點睛】本題考查正弦定理和二倍角的正弦公式,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、Ⅰ詳見解析;Ⅱ①,②或.【解析】

Ⅰ可以通過已知證明出平面PAB,這樣就可以證明出;Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,可以求出相應點的坐標,求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大?。磺蟪銎矫鍼BC的法向量,利用線面角的公式求出的值.【詳解】證明:Ⅰ在圖1中,,,為平行四邊形,,,,當沿AD折起時,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,由于平面ABCD則0,,0,,1,,0,,1,1,,1,,0,,設平面PBC的法向量為y,,則,取,得0,,設平面PCD的法向量b,,則,取,得1,,設二面角的大小為,可知為鈍角,則,.二面角的大小為.設AM與面PBC所成角為,0,,1,,,,平面PBC的法向量0,,直線AM與平面PBC所成的角為,,解得或.【點睛】本題考查了利用線面垂直證明線線垂直,考查了利用向量數(shù)量積,求二面角的大小以及通過線面角公式求定比分點問題.18、(1)(2)詳見解析【解析】

(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨立事件概率計算公式,計算出所求概率.(2)求得的所有可能取值,根據(jù)相互獨立事件概率計算公式,計算出分布列并求得數(shù)學期望.【詳解】(1)由題意,當家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,所以要想領取一臺全自動洗衣機,則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)【點睛】本小題考查概率,分布列,數(shù)學期望等概率與統(tǒng)計的基礎知識;考查運算求解能力,推理論證能力,數(shù)據(jù)處理,應用意識.19、(1)平行,證明見解析;(2).【解析】

(1)由題意及圖形的翻折規(guī)律可知應是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎題.20、(1);(2)噸,理由見解析【解析】

(1)設“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,由題可得,,,,,,代入,計算可得答案;(2)可取180,190,200,210,220,求出噸和噸時的期望,比較大小即可.【詳解】(1)設“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,則,,,,,,;(2)可取180,190,200,210,220,當時,當時,.,時,平均利潤大,所以下個銷售周期內生產(chǎn)量噸.【點睛】本題考查離散型隨機變量的期望,是中檔題.21、(1)(2)【解析】

(1)由已知條件列出關于和的方程,并計算出和的值,jike得到橢圓的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論