




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省珠海市名校2024年中考二模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.下列方程有實(shí)數(shù)根的是()A. B.C.x+2x?1=0 D.2.如果a﹣b=5,那么代數(shù)式(﹣2)?的值是()A.﹣ B. C.﹣5 D.53.某圓錐的主視圖是一個(gè)邊長(zhǎng)為3cm的等邊三角形,那么這個(gè)圓錐的側(cè)面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm24.在一個(gè)不透明的袋子中裝有除顏色外其余均相同的m個(gè)小球,其中5個(gè)黑球,從袋中隨機(jī)摸出一球,記下其顏色,這稱為依次摸球試驗(yàn),之后把它放回袋中,攪勻后,再繼續(xù)摸出一球.以下是利用計(jì)算機(jī)模擬的摸球試驗(yàn)次數(shù)與摸出黑球次數(shù)的列表:摸球試驗(yàn)次數(shù)100100050001000050000100000摸出黑球次數(shù)46487250650082499650007根據(jù)列表,可以估計(jì)出m的值是()A.5 B.10 C.15 D.205.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過(guò)點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長(zhǎng)度是()A.3cm B.cm C.2.5cm D.cm6.某一超市在“五?一”期間開展有獎(jiǎng)促銷活動(dòng),每買100元商品可參加抽獎(jiǎng)一次,中獎(jiǎng)的概率為.小張這期間在該超市買商品獲得了三次抽獎(jiǎng)機(jī)會(huì),則小張()A.能中獎(jiǎng)一次 B.能中獎(jiǎng)兩次C.至少能中獎(jiǎng)一次 D.中獎(jiǎng)次數(shù)不能確定7.如圖,已知△ABC中,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.90° B.135° C.270° D.315°8.如圖,將△ABC繞點(diǎn)C(0,-1)旋轉(zhuǎn)180°得到△A′B′C,設(shè)點(diǎn)A的坐標(biāo)為(a,b),則點(diǎn)A′的坐標(biāo)為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)9.如圖的幾何體中,主視圖是中心對(duì)稱圖形的是()A. B. C. D.10.-2的倒數(shù)是()A.-2 B. C. D.2二、填空題(共7小題,每小題3分,滿分21分)11.在平面直角坐標(biāo)系中,點(diǎn)P到軸的距離為1,到軸的距離為2.寫出一個(gè)符合條件的點(diǎn)P的坐標(biāo)________________.12.分解因式:ax2﹣2ax+a=___________.13.計(jì)算2x3·x2的結(jié)果是_______.14.我國(guó)自主研發(fā)的某型號(hào)手機(jī)處理器采用10nm工藝,已知1nm=0.000000001m,則10nm用科學(xué)記數(shù)法可表示為_____m.15.甲、乙兩車分別從A、B兩地同時(shí)出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達(dá)B地后馬上以另一速度原路返回A地(掉頭的時(shí)間忽略不計(jì)),乙車到達(dá)A地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離y(千米)與甲車的行駛時(shí)間t(小時(shí))之間的函數(shù)圖象,則當(dāng)乙車到達(dá)A地的時(shí)候,甲車與A地的距離為_____千米.16.如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)F處;過(guò)點(diǎn)P作∠BPF的角平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是()17.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22o時(shí),教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45o時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).求教學(xué)樓AB的高度;學(xué)校要在A、E之間掛一些彩旗,請(qǐng)你求出A、E之間的距離(結(jié)果保留整數(shù)).19.(5分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).20.(8分)知識(shí)改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到黑龍灘(用C表示)開展社會(huì)實(shí)踐活動(dòng),車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)21.(10分)為了解某校落實(shí)新課改精神的情況,現(xiàn)以該校九年級(jí)二班的同學(xué)參加課外活動(dòng)的情況為樣本,對(duì)其參加“球類”、“繪畫類”、“舞蹈類”、“音樂(lè)類”、“棋類”活動(dòng)的情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)圖.
(1)參加音樂(lè)類活動(dòng)的學(xué)生人數(shù)為
人,參加球類活動(dòng)的人數(shù)的百分比為
(2)請(qǐng)把圖2(條形統(tǒng)計(jì)圖)補(bǔ)充完整;
(3)該校學(xué)生共600人,則參加棋類活動(dòng)的人數(shù)約為.
(4)該班參加舞蹈類活動(dòng)的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請(qǐng)用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
22.(10分)某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛(ài)好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:(1)九(1)班的學(xué)生人數(shù)為,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;(2)扇形統(tǒng)計(jì)圖中m=,n=,表示“足球”的扇形的圓心角是度;(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.23.(12分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是斤(用含x的代數(shù)式表示);銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?24.(14分)已知關(guān)于x的一元二次方程x2﹣6x+(2m+1)=0有實(shí)數(shù)根.求m的取值范圍;如果方程的兩個(gè)實(shí)數(shù)根為x1,x2,且2x1x2+x1+x2≥20,求m的取值范圍.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】分析:根據(jù)方程解的定義,一一判斷即可解決問(wèn)題;詳解:A.∵x4>0,∴x4+2=0無(wú)解;故本選項(xiàng)不符合題意;B.∵≥0,∴=﹣1無(wú)解,故本選項(xiàng)不符合題意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有實(shí)數(shù)根,故本選項(xiàng)符合題意;D.解分式方程=,可得x=1,經(jīng)檢驗(yàn)x=1是分式方程的增根,故本選項(xiàng)不符合題意.故選C.點(diǎn)睛:本題考查了無(wú)理方程、根的判別式、高次方程、分式方程等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.2、D【解析】【分析】先對(duì)括號(hào)內(nèi)的進(jìn)行通分,進(jìn)行分式的加減法運(yùn)算,然后再進(jìn)行分式的乘除法運(yùn)算,最后把a(bǔ)-b=5整體代入進(jìn)行求解即可.【詳解】(﹣2)?===a-b,當(dāng)a-b=5時(shí),原式=5,故選D.3、A【解析】
根據(jù)已知得出圓錐的底面半徑及母線長(zhǎng),那么利用圓錐的側(cè)面積=底面周長(zhǎng)×母線長(zhǎng)÷2求出即可.【詳解】∵圓錐的軸截面是一個(gè)邊長(zhǎng)為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長(zhǎng)=3πcm,∴圓錐的側(cè)面積=12×3π×3=4.5πcm2故選A.【點(diǎn)睛】此題主要考查了圓錐的有關(guān)計(jì)算,關(guān)鍵是利用圓錐的側(cè)面積=底面周長(zhǎng)×母線長(zhǎng)÷2得出.4、B【解析】
由概率公式可知摸出黑球的概率為5m,分析表格數(shù)據(jù)可知摸出黑球次數(shù)【詳解】解:分析表格數(shù)據(jù)可知摸出黑球次數(shù)摸球?qū)嶒?yàn)次數(shù)的值總是在0.5左右,則由題意可得5故選擇B.【點(diǎn)睛】本題考查了概率公式的應(yīng)用.5、D【解析】分析:根據(jù)垂徑定理得出OE的長(zhǎng),進(jìn)而利用勾股定理得出BC的長(zhǎng),再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點(diǎn)睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長(zhǎng).6、D【解析】
由于中獎(jiǎng)概率為,說(shuō)明此事件為隨機(jī)事件,即可能發(fā)生,也可能不發(fā)生.【詳解】解:根據(jù)隨機(jī)事件的定義判定,中獎(jiǎng)次數(shù)不能確定故選D.【點(diǎn)睛】解答此題要明確概率和事件的關(guān)系:,為不可能事件;為必然事件;為隨機(jī)事件.7、C【解析】
根據(jù)四邊形的內(nèi)角和與直角三角形中兩個(gè)銳角關(guān)系即可求解.【詳解】解:∵四邊形的內(nèi)角和為360°,直角三角形中兩個(gè)銳角和為90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故選:C.【點(diǎn)睛】此題主要考查角度的求解,解題的關(guān)鍵是熟知四邊形的內(nèi)角和為360°.8、D【解析】
設(shè)點(diǎn)A的坐標(biāo)是(x,y),根據(jù)旋轉(zhuǎn)變換的對(duì)應(yīng)點(diǎn)關(guān)于旋轉(zhuǎn)中心對(duì)稱,再根據(jù)中點(diǎn)公式列式求解即可.【詳解】根據(jù)題意,點(diǎn)A、A′關(guān)于點(diǎn)C對(duì)稱,
設(shè)點(diǎn)A的坐標(biāo)是(x,y),
則
=0,
=-1,
解得x=-a,y=-b-2,
∴點(diǎn)A的坐標(biāo)是(-a,-b-2).
故選D.【點(diǎn)睛】本題考查了利用旋轉(zhuǎn)進(jìn)行坐標(biāo)與圖形的變化,根據(jù)旋轉(zhuǎn)的性質(zhì)得出點(diǎn)A、A′關(guān)于點(diǎn)C成中心對(duì)稱是解題的關(guān)鍵9、C【解析】解:球是主視圖是圓,圓是中心對(duì)稱圖形,故選C.10、B【解析】
根據(jù)倒數(shù)的定義求解.【詳解】-2的倒數(shù)是-故選B【點(diǎn)睛】本題難度較低,主要考查學(xué)生對(duì)倒數(shù)相反數(shù)等知識(shí)點(diǎn)的掌握二、填空題(共7小題,每小題3分,滿分21分)11、(寫出一個(gè)即可)【解析】【分析】根據(jù)點(diǎn)到x軸的距離即點(diǎn)的縱坐標(biāo)的絕對(duì)值,點(diǎn)到y(tǒng)軸的距離即點(diǎn)的橫坐標(biāo)的絕對(duì)值,進(jìn)行求解即可.【詳解】設(shè)P(x,y),根據(jù)題意,得|x|=2,|y|=1,即x=±2,y=±1,則點(diǎn)P的坐標(biāo)有(2,1),(2,-1),(-2,1),(2,-1),故答案為:(2,1),(2,-1),(-2,1),(2,-1)(寫出一個(gè)即可).【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)和點(diǎn)到坐標(biāo)軸的距離之間的關(guān)系.熟知點(diǎn)到x軸的距離即點(diǎn)的縱坐標(biāo)的絕對(duì)值,點(diǎn)到y(tǒng)軸的距離即點(diǎn)的橫坐標(biāo)的絕對(duì)值是解題的關(guān)鍵.12、a(x-1)1.【解析】
先提取公因式a,再對(duì)余下的多項(xiàng)式利用完全平方公式繼續(xù)分解.【詳解】解:ax1-1ax+a,
=a(x1-1x+1),
=a(x-1)1.【點(diǎn)睛】本題考查了用提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.13、【解析】試題分析:根據(jù)單項(xiàng)式乘以單項(xiàng)式,結(jié)合同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,可知2x3·x2=2x3+2=2x5.故答案為:2x514、1×10﹣1【解析】
絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】解:10nm用科學(xué)記數(shù)法可表示為1×10-1m,
故答案為1×10-1.【點(diǎn)睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.15、630【解析】分析:兩車相向而行5小時(shí)共行駛了900千米可得兩車的速度之和為180千米/時(shí),當(dāng)相遇后車共行駛了720千米時(shí),甲車到達(dá)B地,由此則可求得兩車的速度.再根據(jù)甲車返回到A地總用時(shí)16.5小時(shí),求出甲車返回時(shí)的速度即可求解.詳解:設(shè)甲車,乙車的速度分別為x千米/時(shí),y千米/時(shí),甲車與乙車相向而行5小時(shí)相遇,則5(x+y)=900,解得x+y=180,相遇后當(dāng)甲車到達(dá)B地時(shí)兩車相距720千米,所需時(shí)間為720÷180=4小時(shí),則甲車從A地到B需要9小時(shí),故甲車的速度為900÷9=100千米/時(shí),乙車的速度為180-100=80千米/時(shí),乙車行駛900-720=180千米所需時(shí)間為180÷80=2.25小時(shí),甲車從B地到A地的速度為900÷(16.5-5-4)=120千米/時(shí).所以甲車從B地向A地行駛了120×2.25=270千米,當(dāng)乙車到達(dá)A地時(shí),甲車離A地的距離為900-270=630千米.點(diǎn)睛:利用函數(shù)圖象解決實(shí)際問(wèn)題,其關(guān)鍵在于正確理解函數(shù)圖象橫,縱坐標(biāo)表示的意義,抓住交點(diǎn),起點(diǎn).終點(diǎn)等關(guān)鍵點(diǎn),理解問(wèn)題的發(fā)展過(guò)程,將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,從而將這個(gè)數(shù)學(xué)問(wèn)題變化為解答實(shí)際問(wèn)題.16、C【解析】
先證明△BPE∽△CDP,再根據(jù)相似三角形對(duì)應(yīng)邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點(diǎn):1.折疊問(wèn)題;2.相似三角形的判定和性質(zhì);3.二次函數(shù)的圖象.17、【解析】mn(n-m)-n(m-n)=mn(n-m)+n(n-m)=n(n-m)(m+1),故答案為n(n-m)(m+1).三、解答題(共7小題,滿分69分)18、(1)2m(2)27m【解析】
(1)首先構(gòu)造直角三角形△AEM,利用,求出即可.(2)利用Rt△AME中,,求出AE即可.【詳解】解:(1)過(guò)點(diǎn)E作EM⊥AB,垂足為M.設(shè)AB為x.在Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+1.在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,又∵,∴,解得:x≈2.∴教學(xué)樓的高2m.(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt△AME中,,∴AE=MEcos22°≈.∴A、E之間的距離約為27m.19、(1)y=﹣2x+1;(2)點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【解析】
(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過(guò)點(diǎn)A(﹣,2),∴m=﹣1.∴雙曲線的表達(dá)式為y=﹣.∵點(diǎn)B(n,﹣1)在雙曲線y=﹣上,∴點(diǎn)B的坐標(biāo)為(1,﹣1).∵直線y=kx+b經(jīng)過(guò)點(diǎn)A(﹣,2),B(1,﹣1),∴,解得∴直線的表達(dá)式為y=﹣2x+1;(2)當(dāng)y=﹣2x+1=0時(shí),x=,∴點(diǎn)C(,0).設(shè)點(diǎn)P的坐標(biāo)為(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題、一次(反比例)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式以及三角形的面積,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法求出函數(shù)的解析式;(2)根據(jù)三角形的面積公式以及S△ABP=3,得出.20、(20-5)千米.【解析】分析:作BD⊥AC,設(shè)AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立關(guān)于x的方程,解之求得x的值,最后由BC=可得答案.詳解:過(guò)點(diǎn)B作BD⊥AC,依題可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,設(shè)AD=x,∴tan∠ABD=即tan30°=,∴BD=x,在Rt△DCB中,∴tan∠CBD=即tan53°=,∴CD=∵CD+AD=AC,∴x+=13,解得,x=∴BD=12-,在Rt△BDC中,∴cos∠CBD=tan60°=,即:BC=(千米),故B、C兩地的距離為(20-5)千米.點(diǎn)睛:此題考查了方向角問(wèn)題.此題難度適中,解此題的關(guān)鍵是將方向角問(wèn)題轉(zhuǎn)化為解直角三角形的知識(shí),利用三角函數(shù)的知識(shí)求解.21、(1)7、30%;(2)補(bǔ)圖見(jiàn)解析;(3)105人;(3)
【解析】試題分析:(1)先根據(jù)繪畫類人數(shù)及其百分比求得總?cè)藬?shù),繼而可得答案;(2)根據(jù)(1)中所求數(shù)據(jù)即可補(bǔ)全條形圖;(3)總?cè)藬?shù)乘以棋類活動(dòng)的百分比可得;(4)利用樹狀圖法列舉出所有可能的結(jié)果,然后利用概率公式即可求解.試題解析:解:(1)本次調(diào)查的總?cè)藬?shù)為10÷25%=40(人),∴參加音樂(lè)類活動(dòng)的學(xué)生人數(shù)為40×17.5%=7人,參加球類活動(dòng)的人數(shù)的百分比為×100%=30%,故答案為7,30%;(2)補(bǔ)全條形圖如下:(3)該校學(xué)生共600人,則參加棋類活動(dòng)的人數(shù)約為600×=105,故答案為105;(4)畫樹狀圖如下:共有12種情況,選中一男一女的有6種,則P(選中一男一女)==.點(diǎn)睛:本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?2、(1)4,補(bǔ)全統(tǒng)計(jì)圖見(jiàn)詳解.(2)10;20;72.(3)見(jiàn)詳解.【解析】
(1)根據(jù)喜歡籃球的人數(shù)與所占的百分比列式計(jì)算即可求出
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中鐵砂石合同范例
- 生物課堂的回顧與展望計(jì)劃
- 個(gè)人勞務(wù)掛靠合同標(biāo)準(zhǔn)文本
- 入黨的動(dòng)機(jī)和目的10篇
- 供應(yīng)氣體合同標(biāo)準(zhǔn)文本
- 主機(jī)銷售合同標(biāo)準(zhǔn)文本
- 與店簽定合同標(biāo)準(zhǔn)文本
- 公司品牌轉(zhuǎn)讓合同標(biāo)準(zhǔn)文本
- 專業(yè)分包團(tuán)隊(duì)合同標(biāo)準(zhǔn)文本
- 業(yè)務(wù)推廣協(xié)議合同標(biāo)準(zhǔn)文本
- 小學(xué)生衛(wèi)生知識(shí)健康教育精課件
- 光伏電站工程施工組織設(shè)計(jì)方案
- 2024年全國(guó)中學(xué)生數(shù)學(xué)奧林匹克競(jìng)賽內(nèi)蒙古賽區(qū)初賽試卷(解析版)
- 《組織行為學(xué)》練習(xí)題庫(kù)+答案
- DL∕T 319-2018 架空輸電線路施工抱桿通 用技術(shù)條件及試驗(yàn)方法
- 管理原理與實(shí)務(wù)
- 煤礦防治水細(xì)則釋義詳解版(一)
- GB/T 44144-2024有聲讀物
- 《橋本氏甲狀腺炎》課件
- 6.3.1化學(xué)能轉(zhuǎn)化為電能-高一《化學(xué)》同步課堂(蘇教版2019必修第二冊(cè))
- 2024年重慶市中考語(yǔ)文試卷真題B卷(含答案逐題解析)
評(píng)論
0/150
提交評(píng)論