江西省高安市重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第1頁
江西省高安市重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第2頁
江西省高安市重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第3頁
江西省高安市重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第4頁
江西省高安市重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江西省高安市重點(diǎn)名校2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列運(yùn)算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣12.下列標(biāo)志中,可以看作是軸對稱圖形的是()A. B. C. D.3.如圖,△ABC中,若DE∥BC,EF∥AB,則下列比例式正確的是()A. B.C. D.4.某數(shù)學(xué)興趣小組開展動手操作活動,設(shè)計(jì)了如圖所示的三種圖形,現(xiàn)計(jì)劃用鐵絲按照圖形制作相應(yīng)的造型,則所用鐵絲的長度關(guān)系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:]5.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD6.下列圖標(biāo)中,是中心對稱圖形的是()A. B.C. D.7.如圖,空心圓柱體的左視圖是()A. B. C. D.8.如圖所示的四邊形,與選項(xiàng)中的一個四邊形相似,這個四邊形是()A. B. C. D.9.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.10.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點(diǎn)F,則的面積為()A.4 B.6 C.8 D.1011.下列說法不正確的是()A.某種彩票中獎的概率是,買1000張?jiān)摲N彩票一定會中獎B.了解一批電視機(jī)的使用壽命適合用抽樣調(diào)查C.若甲組數(shù)據(jù)的標(biāo)準(zhǔn)差S甲=0.31,乙組數(shù)據(jù)的標(biāo)準(zhǔn)差S乙=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定D.在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件12.若代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是()A.x=0 B.x=3 C.x≠0 D.x≠3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若直角三角形兩邊分別為6和8,則它內(nèi)切圓的半徑為_____.14.⊙M的圓心在一次函數(shù)y=x+2圖象上,半徑為1.當(dāng)⊙M與y軸相切時,點(diǎn)M的坐標(biāo)為_____.15.關(guān)于x的不等式組的整數(shù)解有4個,那么a的取值范圍()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤416.如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,將△ABC折疊,使點(diǎn)B恰好落在邊AC上,與點(diǎn)B′重合,AE為折痕,則EB′=_______.17.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統(tǒng)計(jì)圖,根據(jù)該統(tǒng)計(jì)圖可算得該花店銷售花卉的平均單價為_____元.18.已知⊙O的面積為9πcm2,若點(diǎn)O到直線L的距離為πcm,則直線l與⊙O的位置關(guān)系是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(1)如圖1,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點(diǎn)G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點(diǎn)E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點(diǎn)M,探究AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在(2)的基礎(chǔ)上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數(shù)量關(guān)系;.20.(6分)一次函數(shù)的圖象經(jīng)過點(diǎn)和點(diǎn),求一次函數(shù)的解析式.21.(6分)如圖,在平面直角坐標(biāo)系中,等邊三角形ABC的頂點(diǎn)B與原點(diǎn)O重合,點(diǎn)C在x軸上,點(diǎn)C坐標(biāo)為(6,0),等邊三角形ABC的三邊上有三個動點(diǎn)D、E、F(不考慮與A、B、C重合),點(diǎn)D從A向B運(yùn)動,點(diǎn)E從B向C運(yùn)動,點(diǎn)F從C向A運(yùn)動,三點(diǎn)同時運(yùn)動,到終點(diǎn)結(jié)束,且速度均為1cm/s,設(shè)運(yùn)動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點(diǎn)E作EQ∥AB,交AC于點(diǎn)Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當(dāng)△AEQ的面積最大時,平面內(nèi)是否存在一點(diǎn)P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請直接寫出P坐標(biāo),若不存在請說明理由?22.(8分)如圖,AD是△ABC的中線,過點(diǎn)C作直線CF∥AD.(問題)如圖①,過點(diǎn)D作直線DG∥AB交直線CF于點(diǎn)E,連結(jié)AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點(diǎn)P,過點(diǎn)P作直線PG∥AB交直線CF于點(diǎn)E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應(yīng)用)在探究的條件下,設(shè)PE交AC于點(diǎn)M.若點(diǎn)P是AD的中點(diǎn),且△APM的面積為1,直接寫出四邊形ABPE的面積.23.(8分)如圖,已知四邊形ABCD是平行四邊形,延長BA至點(diǎn)E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點(diǎn)O,若AC=AB=3,cosB=,求線段CE的長.24.(10分)如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計(jì)轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.25.(10分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,4);點(diǎn)D的坐標(biāo)為(0,2),點(diǎn)P為二次函數(shù)圖象上的動點(diǎn).(1)求二次函數(shù)的表達(dá)式;(2)當(dāng)點(diǎn)P位于第二象限內(nèi)二次函數(shù)的圖象上時,連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設(shè)平行四邊形APED的面積為S,求S的最大值;(3)在y軸上是否存在點(diǎn)F,使∠PDF與∠ADO互余?若存在,直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.26.(12分)(8分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.27.(12分)如圖1,AB為半圓O的直徑,半徑的長為4cm,點(diǎn)C為半圓上一動點(diǎn),過點(diǎn)C作CE⊥AB,垂足為點(diǎn)E,點(diǎn)D為弧AC的中點(diǎn),連接DE,如果DE=2OE,求線段AE的長.小何根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),將此問題轉(zhuǎn)化為函數(shù)問題解決.小華假設(shè)AE的長度為xcm,線段DE的長度為ycm.(當(dāng)點(diǎn)C與點(diǎn)A重合時,AE的長度為0cm),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.下面是小何的探究過程,請補(bǔ)充完整:(說明:相關(guān)數(shù)據(jù)保留一位小數(shù)).(1)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:x/cm012345678y/cm01.62.53.34.04.75.85.7當(dāng)x=6cm時,請你在圖中幫助小何完成作圖,并使用刻度尺度量此時線段DE的長度,填寫在表格空白處:(2)在圖2中建立平面直角坐標(biāo)系,描出補(bǔ)全后的表中各組對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;(3)結(jié)合畫出的函數(shù)圖象解決問題,當(dāng)DE=2OE時,AE的長度約為cm.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】分析:根據(jù)合并同類項(xiàng)法則,同底數(shù)冪相除,積的乘方的性質(zhì),同底數(shù)冪相乘的性質(zhì),逐一判斷即可.詳解:根據(jù)合并同類項(xiàng)法則,可知x3+x3=2x3,故不正確;根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相加,可知a6÷a2=a4,故不正確;根據(jù)積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,可得x2?x﹣3=x﹣1,故正確.故選D.點(diǎn)睛:此題主要考查了整式的相關(guān)運(yùn)算,是一道綜合性題目,熟練應(yīng)用整式的相關(guān)性質(zhì)和運(yùn)算法則是解題關(guān)鍵.2、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;

B、不是軸對稱圖形,是中心對稱圖形,不符合題意;

C、不是軸對稱圖形,是中心對稱圖形,不符合題意;

D、是軸對稱圖形,符合題意.

故選D.【點(diǎn)睛】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.3、C【解析】

根據(jù)平行線分線段成比例定理找準(zhǔn)線段的對應(yīng)關(guān)系,對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:∵DE∥BC,∴=,BD≠BC,∴≠,選項(xiàng)A不正確;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,選項(xiàng)B不正確;∵EF∥AB,∴=,選項(xiàng)C正確;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,選項(xiàng)D不正確;故選C.【點(diǎn)睛】本題考查了平行線分線段成比例定理;熟練掌握平行線分線段成比例定理,在解答時尋找對應(yīng)線段是關(guān)?。?、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點(diǎn):生活中的平移現(xiàn)象5、B【解析】

由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,

∴AD//BC,AD=BC,

A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF;

B、∵BE=DF,

四邊形BFDE是等腰梯形,

本選項(xiàng)不一定能判定BE//DF;

C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF;

D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF.

故選B.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),注意根據(jù)題意證得四邊形BFDE是平行四邊形是關(guān)鍵.6、B【解析】

根據(jù)中心對稱圖形的概念對各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項(xiàng)錯誤;B、是中心對稱圖形,故本選項(xiàng)正確;C、不是中心對稱圖形,故本選項(xiàng)錯誤;D、不是中心對稱圖形,故本選項(xiàng)錯誤.故選B.【點(diǎn)睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.7、C【解析】

根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點(diǎn)睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.8、D【解析】

根據(jù)勾股定理求出四邊形第四條邊的長度,進(jìn)而求出四邊形四條邊之比,根據(jù)相似多邊形的性質(zhì)判斷即可.【詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項(xiàng)中,四條邊之比為1:3:5:5,且對應(yīng)角相等,故選D.【點(diǎn)睛】本題考查的是相似多邊形的判定和性質(zhì),掌握相似多邊形的對應(yīng)邊的比相等是解題的關(guān)鍵.9、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據(jù)立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點(diǎn),兩個矩形的寬一樣大?。键c(diǎn):三視圖.10、C【解析】

根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,

因?yàn)锽C∥DE,

所以BF:DE=AB:AD,

所以BF=2,CF=BC-BF=4,

所以△CEF的面積=CF?CE=8;

故選:C.點(diǎn)睛:

本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識點(diǎn).11、A【解析】試題分析:根據(jù)抽樣調(diào)查適用的條件、方差的定義及意義和可能性的大小找到正確答案即可.試題解析:A、某種彩票中獎的概率是,只是一種可能性,買1000張?jiān)摲N彩票不一定會中獎,故錯誤;B、調(diào)查電視機(jī)的使用壽命要?dú)碾娨暀C(jī),有破壞性,適合用抽樣調(diào)查,故正確;C、標(biāo)準(zhǔn)差反映了一組數(shù)據(jù)的波動情況,標(biāo)準(zhǔn)差越小,數(shù)據(jù)越穩(wěn)定,故正確;D、袋中沒有黑球,摸出黑球是不可能事件,故正確.故選A.考點(diǎn):1.概率公式;2.全面調(diào)查與抽樣調(diào)查;3.標(biāo)準(zhǔn)差;4.隨機(jī)事件.12、D【解析】分析:根據(jù)分式有意義的條件進(jìn)行求解即可.詳解:由題意得,x﹣3≠0,解得,x≠3,故選D.點(diǎn)睛:此題考查了分式有意義的條件.注意:分式有意義的條件事分母不等于零,分式無意義的條件是分母等于零.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2或-1【解析】

根據(jù)已知題意,求第三邊的長必須分類討論,即8是斜邊或直角邊的兩種情況,然后利用勾股定理求出另一邊的長,再根據(jù)內(nèi)切圓半徑公式求解即可.【詳解】若8是直角邊,則該三角形的斜邊的長為:,∴內(nèi)切圓的半徑為:;若8是斜邊,則該三角形的另一條直角邊的長為:,∴內(nèi)切圓的半徑為:.故答案為2或-1.【點(diǎn)睛】本題考查了勾股定理,三角形的內(nèi)切圓,以及分類討論的數(shù)學(xué)思想,分類討論是解答本題的關(guān)鍵.14、(1,)或(﹣1,)【解析】

設(shè)當(dāng)⊙M與y軸相切時圓心M的坐標(biāo)為(x,x+2),再根據(jù)⊙M的半徑為1即可得出y的值.【詳解】解:∵⊙M的圓心在一次函數(shù)y=x+2的圖象上運(yùn)動,∴設(shè)當(dāng)⊙M與y軸相切時圓心M的坐標(biāo)為(x,x+2),∵⊙M的半徑為1,∴x=1或x=?1,當(dāng)x=1時,y=,當(dāng)x=?1時,y=.∴P點(diǎn)坐標(biāo)為:(1,)或(?1,).故答案為(1,)或(?1,).【點(diǎn)睛】本題考查了切線的性質(zhì)與一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是熟練的掌握切線的性質(zhì)與一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.15、C【解析】分析:先根據(jù)一元一次不等式組解出x的取值,再根據(jù)不等式組的整數(shù)解有4個,求出實(shí)數(shù)a的取值范圍.詳解:解不等式①,得解不等式②,得原不等式組的解集為∵只有4個整數(shù)解,∴整數(shù)解為:故選C.點(diǎn)睛:考查解一元一次不等式組的整數(shù)解,分別解不等式,寫出不等式的解題,根據(jù)不等式整數(shù)解的個數(shù),確定a的取值范圍.16、1.5【解析】在Rt△ABC中,,∵將△ABC折疊得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.設(shè)B′E=BE=x,則CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.17、17【解析】

根據(jù)餅狀圖求出25元所占比重為20%,再根據(jù)加權(quán)平均數(shù)求法即可解題.【詳解】解:1-30%-50%=20%,∴.【點(diǎn)睛】本題考查了加權(quán)平均數(shù)的計(jì)算方法,屬于簡單題,計(jì)算25元所占權(quán)比是解題關(guān)鍵.18、相離【解析】

設(shè)圓O的半徑是r,根據(jù)圓的面積公式求出半徑,再和點(diǎn)0到直線l的距離π比較即可.【詳解】設(shè)圓O的半徑是r,則πr2=9π,∴r=3,∵點(diǎn)0到直線l的距離為π,∵3<π,即:r<d,∴直線l與⊙O的位置關(guān)系是相離,故答案為:相離.【點(diǎn)睛】本題主要考查對直線與圓的位置關(guān)系的理解和掌握,解此題的關(guān)鍵是知道當(dāng)r<d時相離;當(dāng)r=d時相切;當(dāng)r>d時相交.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)AE=23BF,(3)AE=m【解析】

(1)根據(jù)正方形的性質(zhì),可得∠ABC與∠C的關(guān)系,AB與BC的關(guān)系,根據(jù)兩直線垂直,可得∠AMB的度數(shù),根據(jù)直角三角形銳角的關(guān)系,可得∠ABM與∠BAM的關(guān)系,根據(jù)同角的余角相等,可得∠BAM與∠CBF的關(guān)系,根據(jù)ASA,可得△ABE≌△BCF,根據(jù)全等三角形的性質(zhì),可得答案;(2)根據(jù)矩形的性質(zhì)得到∠ABC=∠C,由余角的性質(zhì)得到∠BAM=∠CBF,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)結(jié)論:AE=mn【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如圖2中,結(jié)論:AE=23理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)結(jié)論:AE=mn理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn【點(diǎn)睛】本題考查了四邊形綜合題、相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),矩形的性質(zhì),熟練掌握全等三角形或相似三角形的判定和性質(zhì)是解題的關(guān)鍵.20、y=2x+1.【解析】

直接把點(diǎn)A(﹣1,1),B(1,5)代入一次函數(shù)y=kx+b(k≠0),求出k、b的值即可.【詳解】∵一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)A(﹣1,1)和點(diǎn)B(1,5),∴,解得:.故一次函數(shù)的解析式為y=2x+1.【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)的解析式,熟知待定系數(shù)法求一次函數(shù)解析式一般步驟是解答此題的關(guān)鍵.21、(1)證明見解析;(2)當(dāng)t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進(jìn)而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應(yīng)邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進(jìn)而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時Q的坐標(biāo)即可;(3)當(dāng)△AEQ的面積最大時,D、E、F都是中點(diǎn),分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當(dāng)0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當(dāng)t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點(diǎn)為BC的中點(diǎn),線段EQ為△ABC的中位線,當(dāng)AD為菱形的邊時,可得P1(3,0),P3(6,3),當(dāng)AD為對角線時,P2(0,3),綜上所述,滿足條件的點(diǎn)P坐標(biāo)為(3,0)或(6,3)或(0,3).【點(diǎn)睛】本題考查四邊形綜合題、等邊三角形的性質(zhì)和判定、菱形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會構(gòu)建二次函數(shù)解決最值問題,學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.22、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應(yīng)用】:8.【解析】

(1)先根據(jù)平行線的性質(zhì)和等量代換得出∠1=∠3,再利用中線性質(zhì)得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過點(diǎn)D作DN∥PE交直線CF于點(diǎn)N,由平行線性質(zhì)得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長BP交直線CF于點(diǎn)N,根據(jù)平行線的性質(zhì)結(jié)合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長BP交CF于H,根據(jù)平行四邊形的性質(zhì)結(jié)合三角形的面積公式求解即可.【詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過點(diǎn)D作交直線于點(diǎn),∴四邊形是平行四邊形,∵由問題結(jié)論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長BP交直線CF于點(diǎn)N,∵是的中線,∴四邊形是平行四邊形.【應(yīng)用】如圖④,延長BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對平行線性質(zhì),平行四邊形性質(zhì)的綜合應(yīng)用能力,熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.23、(1)證明見解析;(2)4.【解析】

(1)已知四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根據(jù)一組對邊平行且相等的四邊形是平行四邊形即可判定四邊形ACDE是平行四邊形;(2)連接EC,易證△BEC是直角三角形,解直角三角形即可解決問題.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=AB,∴AE=CD,∵AE∥CD,∴四邊形ACDE是平行四邊形.(2)如圖,連接EC.∵AC=AB=AE,∴△EBC是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.【點(diǎn)睛】本題考查平行四邊形的性質(zhì)和判定、直角三角形的判定、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考常考題型.24、(1);(2).【解析】【分析】(1)根據(jù)題意可求得2個“-2”所占的扇形圓心角的度數(shù),再利用概率公式進(jìn)行計(jì)算即可得;(2)由題意可得轉(zhuǎn)出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據(jù)概率公式進(jìn)行計(jì)算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率為=;(2)由(1)可知,該轉(zhuǎn)盤轉(zhuǎn)出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論