湖北省恩施州市級名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
湖北省恩施州市級名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
湖北省恩施州市級名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
湖北省恩施州市級名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
湖北省恩施州市級名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省恩施州市級名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m2.弘揚社會主義核心價值觀,推動文明城市建設(shè).根據(jù)“文明創(chuàng)建工作評分細(xì)則”,l0名評審團成員對我市2016年度文明刨建工作進行認(rèn)真評分,結(jié)果如下表:人數(shù)2341分?jǐn)?shù)80859095則得分的眾數(shù)和中位數(shù)分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.53.兩個同心圓中大圓的弦AB與小圓相切于點C,AB=8,則形成的圓環(huán)的面積是()A.無法求出 B.8 C.8 D.164.某射手在同一條件下進行射擊,結(jié)果如下表所示:射擊次數(shù)(n)102050100200500……擊中靶心次數(shù)(m)8194492178451……擊中靶心頻率(mn0.800.950.880.920.890.90……由此表推斷這個射手射擊1次,擊中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.95.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(

)A.15

B.12

C.9

D.66.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.7.據(jù)史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒有用鋼筋,也沒有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m8.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD9.分式方程的解為()A.x=-2 B.x=-3 C.x=2 D.x=310.在一次數(shù)學(xué)答題比賽中,五位同學(xué)答對題目的個數(shù)分別為7,5,3,5,10,則關(guān)于這組數(shù)據(jù)的說法不正確的是()A.眾數(shù)是5 B.中位數(shù)是5 C.平均數(shù)是6 D.方差是3.6二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細(xì)線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達點B,那么所用細(xì)線最短需要_____cm.12.如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.其中正確的是______.(填序號)13.在矩形ABCD中,AB=4,BC=3,點P在AB上.若將△DAP沿DP折疊,使點A落在矩形對角線上的處,則AP的長為__________.14.請寫出一個開口向下,并且與y軸交于點(0,1)的拋物線的表達式_________15.如圖,AB為⊙O的弦,C為弦AB上一點,設(shè)AC=m,BC=n(m>n),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過的面積為(m2﹣n2)π,則=______16.如圖,直線,點A1坐標(biāo)為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按照此做法進行下去,點A8的坐標(biāo)為__________.三、解答題(共8題,共72分)17.(8分)如圖,△ABC中,點D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的長.18.(8分)如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當(dāng)∠B=時,四邊形OCAD是菱形;②當(dāng)∠B=時,AD與相切.19.(8分)△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.如圖(1)當(dāng)射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.如圖(2),將∠MDN繞點D沿逆時針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.在圖(2)中,若AB=AC=10,BC=12,當(dāng)△DEF的面積等于△ABC的面積的時,求線段EF的長.20.(8分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點P從B點出發(fā),以1cm/s的速度沿BC→CD→DA運動至A點停止,則從運動開始經(jīng)過多少時間,△BEP為等腰三角形.21.(8分)小華想復(fù)習(xí)分式方程,由于印刷問題,有一個數(shù)“?”看不清楚:.她把這個數(shù)“?”猜成5,請你幫小華解這個分式方程;小華的媽媽說:“我看到標(biāo)準(zhǔn)答案是:方程的增根是,原分式方程無解”,請你求出原分式方程中“?”代表的數(shù)是多少?22.(10分)如圖,在等邊三角形ABC中,點D,E分別在BC,AB上,且∠ADE=60°.求證:△ADC~△DEB.23.(12分)先化簡,再求值:(+)÷,其中x=24.在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣4,0),B(1,0)兩點,與y軸交于點C.(1)求這個二次函數(shù)的解析式;(2)連接AC、BC,判斷△ABC的形狀,并證明;(3)若點P為二次函數(shù)對稱軸上點,求出使△PBC周長最小時,點P的坐標(biāo).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結(jié)論.【詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【點睛】本題考查了解直角三角形的應(yīng)用.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.2、A【解析】找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),可得答案.解:在這一組數(shù)據(jù)中90是出現(xiàn)次數(shù)最多的,故眾數(shù)是90;排序后處于中間位置的那個數(shù),那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是87.5;故選:A.“點睛”本題考查了眾數(shù)、中位數(shù)的知識,掌握各知識點的概念是解答本題的關(guān)鍵.注意中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).3、D【解析】試題分析:設(shè)AB于小圓切于點C,連接OC,OB.∵AB于小圓切于點C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點:1.垂徑定理的應(yīng)用;2.切線的性質(zhì).4、D【解析】

觀察表格的數(shù)據(jù)可以得到擊中靶心的頻率,然后用頻率估計概率即可求解.【詳解】依題意得擊中靶心頻率為0.90,估計這名射手射擊一次,擊中靶心的概率約為0.90.故選:D.【點睛】此題主要考查了利用頻率估計概率,首先通過實驗得到事件的頻率,然后用頻率估計概率即可解決問題.5、A【解析】

根據(jù)三角函數(shù)的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A6、D【解析】

過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.7、C【解析】連結(jié)OA,如圖所示:

∵CD⊥AB,

∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.8、D【解析】試題分析:對于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據(jù)AAS判定定理可以判定△POC≌△POD;對于BOC=OD,根據(jù)SAS判定定理可以判定△POC≌△POD;對于C,∠OPC=∠OPD,根據(jù)ASA判定定理可以判定△POC≌△POD;,對于D,PC=PD,無法判定△POC≌△POD,故選D.考點:角平分線的性質(zhì);全等三角形的判定.9、B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,經(jīng)檢驗x=﹣3是分式方程的解.故選B.10、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)以及方差的定義判斷各選項正誤即可.【詳解】A、數(shù)據(jù)中5出現(xiàn)2次,所以眾數(shù)為5,此選項正確;B、數(shù)據(jù)重新排列為3、5、5、7、10,則中位數(shù)為5,此選項正確;C、平均數(shù)為(7+5+3+5+10)÷5=6,此選項正確;D、方差為×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此選項錯誤;故選:D.【點睛】本題主要考查了方差、平均數(shù)、中位數(shù)以及眾數(shù)的知識,解答本題的關(guān)鍵是熟練掌握各個知識點的定義以及計算公式,此題難度不大.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

要求所用細(xì)線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據(jù)兩點之間線段最短,AB′==1cm.故答案為1.考點:平面展開-最短路徑問題.12、①②④【解析】

①根據(jù)旋轉(zhuǎn)得到,對應(yīng)角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判斷②由旋轉(zhuǎn)得出AD=AF,∠DAE=∠EAF,及公共邊即可證明③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°兩個條件,無法證明④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,進而得出∠EBF=90°,然后在Rt△BEF中,運用勾股定理得出BE1+BF1=EF1,等量代換后判定④正確【詳解】由旋轉(zhuǎn),可知:∠CAD=∠BAF.∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠BAF+∠BAE=∠EAF=45°,結(jié)論①正確;②由旋轉(zhuǎn),可知:AD=AF在△AED和△AEF中,∴△AED≌△AEF(SAS),結(jié)論②正確;③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°兩個條件,無法證出△ABE∽△ACD,結(jié)論③錯誤;④由旋轉(zhuǎn),可知:CD=BF,∠ACD=∠ABF=45°,∴∠EBF=∠ABE+∠ABF=90°,∴BF1+BE1=EF1.∵△AED≌△AEF,EF=DE,又∵CD=BF,∴BE1+DC1=DE1,結(jié)論④正確.故答案為:①②④【點睛】本題考查了相似三角形的判定,全等三角形的判定與性質(zhì),勾股定理,熟練掌握定理是解題的關(guān)鍵13、或【解析】

①點A落在矩形對角線BD上,如圖1,∵AB=4,BC=3,∴BD=5,根據(jù)折疊的性質(zhì),AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,設(shè)AP=x,則BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②點A落在矩形對角線AC上,如圖2,根據(jù)折疊的性質(zhì)可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案為或.14、(答案不唯一)【解析】

根據(jù)二次函數(shù)的性質(zhì),拋物線開口向下a<0,與y軸交點的縱坐標(biāo)即為常數(shù)項,然后寫出即可.【詳解】∵拋物線開口向下,并且與y軸交于點(0,1)∴二次函數(shù)的一般表達式中,a<0,c=1,∴二次函數(shù)表達式可以為:(答案不唯一).【點睛】本題考查二次函數(shù)的性質(zhì),掌握開口方向、與y軸的交點與二次函數(shù)二次項系數(shù)、常數(shù)項的關(guān)系是解題的關(guān)鍵.15、【解析】

先確定線段BC過的面積:圓環(huán)的面積,作輔助圓和弦心距OD,根據(jù)已知面積列等式可得:S=πOB2-πOC2=(m2-n2)π,則OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得結(jié)論.【詳解】如圖,連接OB、OC,以O(shè)為圓心,OC為半徑畫圓,則將弦AB繞圓心O旋轉(zhuǎn)一周,線段BC掃過的面積為圓環(huán)的面積,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,過O作OD⊥AB于D,∴BD=AD=AB=,CD=AC-AD=m-=,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=,∵m>0,n>0,∴m=,∴,故答案為.【點睛】此題主要考查了勾股定理,垂徑定理,一元二次方程等知識,根據(jù)旋轉(zhuǎn)的性質(zhì)確定線段BC掃過的面積是解題的關(guān)鍵,是一道中等難度的題目.16、(128,0)【解析】

∵點A1坐標(biāo)為(1,0),且B1A1⊥x軸,∴B1的橫坐標(biāo)為1,將其橫坐標(biāo)代入直線解析式就可以求出B1的坐標(biāo),就可以求出A1B1的值,OA1的值,根據(jù)銳角三角函數(shù)值就可以求出∠xOB3的度數(shù),從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,從而尋找出點A2、A3…的坐標(biāo)規(guī)律,最后求出A8的坐標(biāo).【詳解】點坐標(biāo)為(1,0),

點的橫坐標(biāo)為1,且點在直線上

在中由勾股定理,得

,

在中,

.

.

.

.

故答案為.【點睛】本題是一道一次函數(shù)的綜合試題,也是一道規(guī)律試題,考查了直角三角形的性質(zhì),特別是所對的直角邊等于斜邊的一半的運用,點的坐標(biāo)與函數(shù)圖象的關(guān)系.三、解答題(共8題,共72分)17、.【解析】試題分析:可證明△ACD∽△ABC,則,即得出AC2=AD?AB,從而得出AC的長.試題解析:∵∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC.∴,∵AD=2,AB=6,∴.∴.∴AC=.考點:相似三角形的判定與性質(zhì).18、(1)證明見解析;(2)①30°,②45°【解析】試題分析:(1)根據(jù)已知條件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根據(jù)三角形內(nèi)角和定理得出∠AOC=∠OAD,從而證得OC∥AD,即可證得結(jié)論;

(2)①若四邊形OCAD是菱形,則OC=AC,從而證得OC=OA=AC,得出∠即可求得

②AD與相切,根據(jù)切線的性質(zhì)得出根據(jù)AD∥OC,內(nèi)錯角相等得出從而求得試題解析:(方法不唯一)(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四邊形OCAD是平行四邊形;(2)①∵四邊形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∴故答案為②∵AD與相切,∴∵AD∥OC,∴∴故答案為19、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見解析;(3)4.【解析】

(1)根據(jù)等腰三角形的性質(zhì)以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質(zhì)得出,從而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面積等于△ABC的面積的,求出DH的長,從而利用S△DEF的值求出EF即可【詳解】解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,證明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)連接AD,過D點作DG⊥EF,DH⊥BF,垂足分別為G,H.∵AB=AC,D是BC的中點,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=?BC?AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵?AD?BD=?AB?DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【點睛】本題考查了和相似有關(guān)的綜合性題目,用到的知識點有三角形相似的判定和性質(zhì)、等腰三角形的性質(zhì)以及勾股定理的運用,靈活運用相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵,解答時,要仔細(xì)觀察圖形、選擇合適的判定方法,注意數(shù)形結(jié)合思想的運用.20、(1)證明見解析;(2)從運動開始經(jīng)過2s或s或s或s時,△BEP為等腰三角形.【解析】

(1)根據(jù)內(nèi)錯角相等,得到兩邊平行,然后再根據(jù)三角形內(nèi)角和等于180度得到另一對內(nèi)錯角相等,從而證得原四邊形是平行四邊形;(2)分別考慮P在BC和DA上的情況求出t的值.【詳解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四邊形ABCD是平行四邊形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD間的最短距離是4cm,∵AB=3cm,AE=AB,∴AE=1cm,BE=2cm,設(shè)經(jīng)過ts時,△BEP是等腰三角形,當(dāng)P在BC上時,①BP=EB=2cm,t=2時,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=BE=1cm∵cos∠ABC=,∴BP=cm,t=時,△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,則BP=2BN,∴cosB=,∴,BN=cm,∴BP=,∴t=時,△BEP是等腰三角形;當(dāng)P在CD上不能得出等腰三角形,∵AB、CD間的最短距離是4cm,CA⊥AB,CA=4cm,當(dāng)P在AD上時,只能BE=EP=2cm,過P作PQ⊥BA于Q,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,設(shè)PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=,AP=5x=cm,∴t=5+5+3﹣=,答:從運動開始經(jīng)過2s或s或s或s時,△BEP為等腰三角形.【點睛】本題主要考查平行四邊形的判定定理及一元二次方程的解法,要求學(xué)生能夠熟練利用邊角關(guān)系解三角形.21、(1);(2)原分式方程中“?”代表的數(shù)是-1.【解析】

(1)“?”當(dāng)成5,解分式方程即可,(2)方程有增根是去分母時產(chǎn)生的,故先去分母,再將x=2代入即可解答.【詳解】(1)方程兩邊同時乘以得解得經(jīng)檢驗,是原分式方程的解.(2)設(shè)?為,方程兩邊同時乘以得由于是原分式方程的增根,所以把代入上面的等式得所以,原分式方程中“?”代表的數(shù)是-1.【點睛】本題考查了分式方程解法和增根的定義及應(yīng)用.增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.增根確定后可按如下步驟進行:

①化分式方程為整式方程;

②把增根代入整式方程即可求得相關(guān)字母的值.22、見解析【解析】

根據(jù)等邊三角形性質(zhì)得∠B=∠C,根據(jù)三角形外角性質(zhì)得∠CAD=∠BDE,易證.【詳解】證明:ABC是等邊三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論